PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'CIRCLEQ_LAST.3'
$ man CIRCLEQ_LAST.3
CIRCLEQ(3) Linux Programmer's Manual CIRCLEQ(3)
NAME
CIRCLEQ_EMPTY, CIRCLEQ_ENTRY, CIRCLEQ_FIRST, CIRCLEQ_FOREACH,
CIRCLEQ_FOREACH_REVERSE,
CIRCLEQ_HEAD, CIRCLEQ_ HEAD_INITIALIZER, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_IN?
SERT_BEFORE, CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLEQ_LAST, CIRCLEQ_LOOP_NEXT,
CIRCLEQ_LOOP_PREV, CIRCLEQ_NEXT, CIRCLEQ_PREV, CIRCLEQ_REMOVE - implementation of a doubly
linked circular queue
SYNOPSIS
#include <sys/queue.h>
int CIRCLEQ_EMPTY(CIRCLEQ_HEAD *head);
CIRCLEQ_ENTRY(TYPE);
struct TYPE *CIRCLEQ_FIRST(CIRCLEQ_HEAD *head);
CIRCLEQ_FOREACH(struct TYPE *var, CIRCLEQ_HEAD *head,
CIRCLEQ_ENTRY NAME);
CIRCLEQ_FOREACH_REVERSE(struct TYPE *var, CIRCLEQ_HEAD *head,
CIRCLEQ_ENTRY NAME);
CIRCLEQ_HEAD(HEADNAME, TYPE);
CIRCLEQ_HEAD CIRCLEQ_HEAD_INITIALIZER(CIRCLEQ_HEAD head);
void CIRCLEQ_INIT(CIRCLEQ_HEAD *head);
void CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head, struct TYPE *listelm,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head, struct TYPE *listelm, Page 1/5

struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_ INSERT_HEAD(CIRCLEQ_HEAD *head, struct TYPE *elm,
CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head, struct TYPE *elm,
CIRCLEQ_ENTRY NAME);

struct TYPE *CIRCLEQ_LAST(CIRCLEQ_HEAD *head);

void CIRCLEQ_LOOP_NEXT(CIRCLEQ_HEAD *head, struct TYPE *elm,
CIRCLEQ_ENTRY NAME);

void CIRCLEQ_LOOP_PREV(CIRCLEQ_HEAD *head, struct TYPE *elm,
CIRCLEQ_ENTRY NAME);

struct TYPE *CIRCLEQ_NEXT(struct TYPE *elm, CIRCLEQ_ENTRY NAME);

struct TYPE *CIRCLEQ_PREV(struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head, struct TYPE *elm,
CIRCLEQ_ENTRY NAME);

DESCRIPTION

These macros define and operate on doubly linked circular queues.

In the macro definitions, TYPE is the name of a user-defined structure, that must contain

a field of type CIRCLEQ_ENTRY, named NAME. The argument HEADNAME is the name of a user-

defined structure that must be declared using the macro CIRCLEQ_HEAD().

A circular queue is headed by a structure defined by the CIRCLEQ_HEAD() macro. This

structure contains a pair of pointers, one to the first element in the circular queue and

the other to the last element in the circular queue. The elements are doubly linked so

that an arbitrary element can be removed without traversing the circular queue. New ele?

ments can be added to the circular queue after an existing element, before an existing el?

ement, at the head of the circular queue, or at the end of the circular queue. A CIR?

CLEQ_HEAD structure is declared as follows:

CIRCLEQ_HEAD(HEADNAME, TYPE) head:;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type of the

elements to be linked into the circular queue. A pointer to the head of the circular

gueue can later be declared as:

struct HEADNAME *headp;
(The names head and headp are user selectable.)

The macro CIRCLEQ_HEAD_INITIALIZER() evaluates to an initializer for the circular queue Page 2/5

head.
The macro CIRCLEQ_EMPTY() evaluates to true if there are no items on the circular queue.
The macro CIRCLEQ_ENTRY/() declares a structure that connects the elements in the circular
queue.
The macro CIRCLEQ_FIRST() returns the first item on the circular queue.
The macro CIRCLEQ_FOREACH() traverses the circular queue referenced by head in the forward
direction, assigning each element in turn to var. var is set to &head if the loop com?
pletes normally, or if there were no elements.
The macro CIRCLEQ_FOREACH_REVERSE() traverses the circular queue referenced by head in the
reverse direction, assigning each element in turn to var.
The macro CIRCLEQ_INIT() initializes the circular queue referenced by head.
The macro CIRCLEQ_INSERT_HEAD() inserts the new element elm at the head of the circular
queue.
The macro CIRCLEQ_INSERT_TAIL() inserts the new element elm at the end of the circular
queue.
The macro CIRCLEQ_INSERT_AFTER() inserts the new element elm after the element listelm.
The macro CIRCLEQ_INSERT_BEFORE() inserts the new element elm before the element listelm.
The macro CIRCLEQ_LAST() returns the last item on the circular queue.
The macro CIRCLEQ_NEXT() returns the next item on the circular queue, or &head if this
item is the last one.
The macro CIRCLEQ_PREV() returns the previous item on the circular queue, or &head if this
item is the first one.
The macro CIRCLEQ_LOOP_NEXT() returns the next item on the circular queue. If elmis the
last element on the circular queue, the first element is returned.
The macro CIRCLEQ_LOOP_PREV() returns the previous item on the circular queue. If elmis
the first element on the circular queue, the last element is returned.
The macro CIRCLEQ_REMOVE() removes the element elm from the circular queue.

RETURN VALUE
CIRCLEQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue contains at
least one entry.
CIRCLEQ_FIRST(), CIRCLEQ_LAST(), CIRCLEQ_NEXT(), and CIRCLEQ_PREV() return a pointer to
the first, last, next or previous TYPE structure, respectively.

CIRCLEQ_HEAD_INITIALIZER() returns an initializer that can be assigned to the queue head. Page 3/5

CONFORMING TO

Not in POSIX.1, POSIX.1-2001 or POSIX.1-2008. Present on the BSDs (CIRCLEQ macros first

appeared in 4.4BSD).

BUGS

The macros CIRCLEQ_FOREACH() and CIRCLEQ_FOREACH_REVERSE() don't allow var to be removed

or freed within the loop, as it would interfere with the traversal. The macros CIR?

CLEQ_FOREACH_SAFE() and CIRCLEQ_FOREACH_REVERSE_SAFE(), which are present on the BSDs but

are not present in glibc, fix this limitation by allowing var to safely be removed from

the list and freed from within the loop without interfering with the traversal.

EXAMPLES

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/queue.h>

struct entry {

3

int data;

CIRCLEQ_ENTRY(entry) entries; /* Queue. */

CIRCLEQ_HEAD(circlehead, entry);

int

main(void)

{

struct entry *nl, *n2, *n3, *np;

struct circlehead head,; [* Queue head. */
inti;
CIRCLEQ_INIT(&head); [* Initialize the queue. */

nl = malloc(sizeof(struct entry)); /* Insert at the head. */
CIRCLEQ_INSERT_HEAD(&head, n1, entries);

nl = malloc(sizeof(struct entry)); /* Insert at the tail. */
CIRCLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */
CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before. */

Page 4/5

CIRCLEQ_INSERT_BEFORE(&head, n2, n3, entries);
CIRCLEQ_REMOVE(&head, n2, entries); /* Deletion. */
free(n2);
[* Forward traversal. */
i=0;
CIRCLEQ_FOREACH(np, &head, entries)
np->data = i++;
[* Reverse traversal. */
CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
printf("%i\n", np->data);
[* Queue deletion. */
nl = CIRCLEQ_FIRST(&head);
while (n1 != (void *)&head) {
n2 = CIRCLEQ_NEXT(n1, entries);
free(nl);
nl =n2;
}
CIRCLEQ_INIT(&head);
exit(EXIT_SUCCESS);
}
SEE ALSO
insque(3), queue(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-10-21 CIRCLEQ(3)

Page 5/5

