PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'CMSG_DATA.3'
$ man CMSG_DATA.3
CMSG(3) Linux Programmer's Manual CMSG(3)
NAME
CMSG_ALIGN, CMSG_SPACE, CMSG_NXTHDR, CMSG_FIRSTHDR - access ancillary data
SYNOPSIS
#include <sys/socket.h>
struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);
struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh,
struct cmsghdr *cmsg);
size_ t CMSG_ALIGN(size_t length);
size_t CMSG_SPACE(size_t length);
size_t CMSG_LEN(size _t length);
unsigned char *CMSG_DATA(struct cmsghdr *cmsg);
DESCRIPTION
These macros are used to create and access control messages (also called ancillary data)
that are not a part of the socket payload. This control information may include the in?
terface the packet was received on, various rarely used header fields, an extended error
description, a set of file descriptors, or UNIX credentials. For instance, control mes?
sages can be used to send additional header fields such as IP options. Ancillary data is
sent by calling sendmsg(2) and received by calling recvmsg(2). See their manual pages for
more information.
Ancillary data is a sequence of cmsghdr structures with appended data. See the specific
protocol man pages for the available control message types. The maximum ancillary buffer

size allowed per socket can be set using /proc/sys/net/core/optmem_max; see socket(7). Page 1/4

The cmsghdr structure is defined as follows:
struct cmsghdr {
size_tcmsg_len; /* Data byte count, including header
(type is socklen_t in POSIX) */
int cmsg_level; /* Originating protocol */
int cmsg_type; /* Protocol-specific type */
/* followed by
unsigned char cmsg_data[]; */
h

The sequence of cmsghdr structures should never be accessed directly. Instead, use only

the following macros:

* CMSG_FIRSTHDR() returns a pointer to the first cmsghdr in the ancillary data buffer as?
sociated with the passed msghdr. It returns NULL if there isn't enough space for a
cmsghdr in the buffer.

* CMSG_NXTHDR() returns the next valid cmsghdr after the passed cmsghdr. It returns NULL
when there isn't enough space left in the buffer.

When initializing a buffer that will contain a series of cmsghdr structures (e.g., to
be sent with sendmsg(2)), that buffer should first be zero-initialized to ensure the
correct operation of CMSG_NXTHDR().

* CMSG_ALIGN(), given alength, returns it including the required alignment. This is a
constant expression.

* CMSG_SPACE() returns the number of bytes an ancillary element with payload of the
passed data length occupies. This is a constant expression.

* CMSG_DATA() returns a pointer to the data portion of a cmsghdr. The pointer returned
cannot be assumed to be suitably aligned for accessing arbitrary payload data types.
Applications should not cast it to a pointer type matching the payload, but should in?
stead use memcpy(3) to copy data to or from a suitably declared object.

* CMSG_LEN() returns the value to store in the cmsg_len member of the cmsghdr structure,
taking into account any necessary alignment. It takes the data length as an argument.
This is a constant expression.

To create ancillary data, first initialize the msg_controllen member of the msghdr with

the length of the control message buffer. Use CMSG_FIRSTHDR() on the msghdr to get the

first control message and CMSG_NXTHDR() to get all subsequent ones. In each control mes?

Page 2/4

sage, initialize cmsg_len (with CMSG_LEN()), the other cmsghdr header fields, and the data
portion using CMSG_DATA(). Finally, the msg_controllen field of the msghdr should be set
to the sum of the CMSG_SPACE() of the length of all control messages in the buffer. For
more information on the msghdr, see recvmsg(2).
CONFORMING TO
This ancillary data model conforms to the POSIX.1g draft, 4.4BSD-Lite, the IPv6 advanced
API described in RFC 2292 and SUSv2. CMSG_FIRSTHDR(), CMSG_NXTHDR(), and CMSG_DATA() are
specified in POSIX.1-2008. CMSG_SPACE() and CMSG_LEN() will be included in the next POSIX
release (Issue 8).
CMSG_ALIGN() is a Linux extension.
NOTES
For portability, ancillary data should be accessed using only the macros described here.
CMSG_ALIGN() is a Linux extension and should not be used in portable programs.
In Linux, CMSG_LEN(), CMSG_DATA(), and CMSG_ALIGN() are constant expressions (assuming
their argument is constant), meaning that these values can be used to declare the size of
global variables. This may not be portable, however.
EXAMPLES
This code looks for the IP_TTL option in a received ancillary buffer:
struct msghdr msgh;
struct cmsghdr *cmsg;
int received_ttl;
[* Receive auxiliary data in msgh */
for (cmsg = CMSG_FIRSTHDR(&msgh); cmsg !'= NULL;
cmsg = CMSG_NXTHDR(&msgh, cmsg)) {
if (cmsg->cmsg_level == IPPROTO_IP
&& cmsg->cmsg_type == IP_TTL) {
memcpy(&receive_ttl, CMSG_DATA(cmsg), sizeof(received_ttl));

break;

}
if (cmsg == NULL) {
[* Error: IP_TTL not enabled or small buffer or I1/O error */

} Page 3/4

The code below passes an array of file descriptors over a UNIX domain

SCM_RIGHTS:

struct msghdrmsg ={0 };
struct cmsghdr *cmsg;
int myfds[NUM_FD]; /* Contains the file descriptors to pass */
char iobuff1];
struct iovec io = {
.iov_base = iobuf,
.iov_len = sizeof(iobuf)
h
union { /* Ancillary data buffer, wrapped in a union
in order to ensure it is suitably aligned */
char buf[CMSG_SPACE(sizeof(myfds))];
struct cmsghdr align;
T
msg.msg_iov = &io;
msg.msg_iovlen = 1;
msg.msg_control = u.buf;
msg.msg_controllen = sizeof(u.buf);
cmsg = CMSG_FIRSTHDR(&msQ);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(myfds));

memcpy(CMSG_DATA(cmsg), myfds, sizeof(myfds));

SEE ALSO

recvmsg(2), sendmsg(2)

RFC 2292

COLOPHON

socket using

This page is part of release 5.10 of the Linux man-pages project. A description of the

project, information about reporting bugs, and the latest version of this page, can be

found at https://www.kernel.org/doc/man-pages/.

Linux

2020-11-01 CMSG(3)

Page 4/4

