PDF generator

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'CPU_ISSET_S.3'
$ man CPU_ISSET_S.3
CPU_SET(3) Linux Programmer's Manual CPU_SET(3)
NAME
CPU_SET, CPU_CLR, CPU_ISSET, CPU_ZERO, CPU_COUNT, CPU_AND, CPU_OR, CPU_XOR, CPU_EQUAL,
CPU_ALLOC, CPU_ALLOC_SIZE, CPU_FREE, CPU_SET_S, CPU_CLR_S, CPU_ISSET_S, CPU_ZERO_S,
CPU_COUNT_S, CPU_AND_S, CPU_OR_S, CPU_XOR_S, CPU_EQUAL_S - macros for manipulating CPU
sets
SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>
void CPU_ZERO(cpu_set_t *set);
void CPU_SET(int cpu, cpu_set _t *set);
void CPU_CLR(int cpu, cpu_set_t *set);
int CPU_ISSET(int cpu, cpu_set_t *set);
int CPU_COUNT(cpu_set _t *set);
void CPU_AND(cpu_set_t *destset,
cpu_set_t *srcsetl, cpu_set t *srcset2);
void CPU_OR(cpu_set_t *destset,
cpu_set_t *srcsetl, cpu_set t *srcset2);
void CPU_XOR(cpu_set_t *destset,
cpu_set_t *srcsetl, cpu_set t *srcset2);
int CPU_EQUAL(cpu_set_t *setl, cpu_set_t *set2);
cpu_set_t *CPU_ALLOC(int num_cpus);

void CPU_FREE(cpu_set_t *set); Page 1/6

size_t CPU_ALLOC_SIZE(int num_cpus);
void CPU_ZERO_S(size_t setsize, cpu_set t *set);
void CPU_SET_S(int cpu, size_t setsize, cpu_set_t *set);
void CPU_CLR_S(int cpu, size_t setsize, cpu_set_t *set);
int CPU_ISSET_S(int cpu, size_t setsize, cpu_set_t *set);
int CPU_COUNT _S(size_t setsize, cpu_set_t *set);
void CPU_AND_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcsetl, cpu_set t *srcset2);
void CPU_OR_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcsetl, cpu_set t *srcset2);
void CPU_XOR_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcsetl, cpu_set t *srcset2);
int CPU_EQUAL_S(size_t setsize, cpu_set _t *setl, cpu_set_t *set2);
DESCRIPTION
The cpu_set t data structure represents a set of CPUs. CPU sets are used hy
sched_setaffinity(2) and similar interfaces.
The cpu_set_t data type is implemented as a bit mask. However, the data structure should
be treated as opaque: all manipulation of CPU sets should be done via the macros described
in this page.
The following macros are provided to operate on the CPU set set:
CPU_ZERO()
Clears set, so that it contains no CPUs.
CPU_SET()
Add CPU cpu to set.
CPU_CLR()
Remove CPU cpu from set.
CPU_ISSET()
Test to see if CPU cpu is a member of set.
CPU_COUNT()
Return the number of CPUs in set.
Where a cpu argument is specified, it should not produce side effects, since the above
macros may evaluate the argument more than once.

The first CPU on the system corresponds to a cpu value of 0, the next CPU corresponds to a Page 2/6

cpu value of 1, and so on. No assumptions should be made about particular CPUs being
available, or the set of CPUs being contiguous, since CPUs can be taken offline dynami?
cally or be otherwise absent. The constant CPU_SETSIZE (currently 1024) specifies a value
one greater than the maximum CPU number that can be stored in cpu_set t.
The following macros perform logical operations on CPU sets:
CPU_AND()
Store the intersection of the sets srcsetl and srcset2 in destset (which may be one
of the source sets).
CPU_OR()
Store the union of the sets srcsetl and srcset2 in destset (which may be one of the
source sets).
CPU_XOR()
Store the XOR of the sets srcsetl and srcset2 in destset (which may be one of the
source sets). The XOR means the set of CPUs that are in either srcsetl or srcset2,
but not both.
CPU_EQUAL()
Test whether two CPU set contain exactly the same CPUs.
Dynamically sized CPU sets
Because some applications may require the ability to dynamically size CPU sets (e.g., to
allocate sets larger than that defined by the standard cpu_set_t data type), glibc nowa?
days provides a set of macros to support this.
The following macros are used to allocate and deallocate CPU sets:
CPU_ALLOC()
Allocate a CPU set large enough to hold CPUs in the range 0 to num_cpus-1.
CPU_ALLOC_SIZE()
Return the size in bytes of the CPU set that would be needed to hold CPUs in the
range 0 to num_cpus-1. This macro provides the value that can be used for the set?
size argument in the CPU_*_S() macros described below.
CPU_FREE()
Free a CPU set previously allocated by CPU_ALLOC().
The macros whose names end with "_S" are the analogs of the similarly named macros without
the suffix. These macros perform the same tasks as their analogs, but operate on the dy?

namically allocated CPU set(s) whose size is setsize bytes. Page 3/6

RETURN VALUE
CPU_ISSET() and CPU_ISSET_S() return nonzero if cpu is in set; otherwise, it returns 0.
CPU_COUNT() and CPU_COUNT_S() return the number of CPUs in set.
CPU_EQUAL() and CPU_EQUAL_S() return nonzero if the two CPU sets are equal; otherwise they
return O.
CPU_ALLOC() returns a pointer on success, or NULL on failure. (Errors are as for mal?
loc(3).)
CPU_ALLOC_SIZE() returns the number of bytes required to store a CPU set of the specified
cardinality.
The other functions do not return a value.
VERSIONS
The CPU_ZERO(), CPU_SET(), CPU_CLR(), and CPU_ISSET() macros were added in glibc 2.3.3.
CPU_COUNTY() first appeared in glibc 2.6.
CPU_AND(), CPU_OR(), CPU_XOR(), CPU_EQUAL(), CPU_ALLOC(), CPU_ALLOC_SIZE(), CPU_FREE(),
CPU_ZERO_S(), CPU_SET_S(), CPU_CLR_S(), CPU_ISSET_S(), CPU_AND_S(), CPU_OR_S(),
CPU_XOR_S(), and CPU_EQUAL_S() first appeared in glibc 2.7.
CONFORMING TO
These interfaces are Linux-specific.
NOTES
To duplicate a CPU set, use memcpy(3).
Since CPU sets are bit masks allocated in units of long words, the actual number of CPUs
in a dynamically allocated CPU set will be rounded up to the next multiple of sizeof(un?
signed long). An application should consider the contents of these extra bits to be unde?
fined.
Notwithstanding the similarity in the names, note that the constant CPU_SETSIZE indicates
the number of CPUs in the cpu_set_t data type (thus, it is effectively a count of the bits
in the bit mask), while the setsize argument of the CPU_* S() macros is a size in bytes.
The data types for arguments and return values shown in the SYNOPSIS are hints what about
is expected in each case. However, since these interfaces are implemented as macros, the
compiler won't necessarily catch all type errors if you violate the suggestions.
BUGS
On 32-bit platforms with glibc 2.8 and earlier, CPU_ALLOC() allocates twice as much space

as is required, and CPU_ALLOC_SIZE() returns a value twice as large as it should. This Page 4/6

bug should not affect the semantics of a program, but does result in wasted memory and

less efficient operation of the macros that operate on dynamically allocated CPU sets.

These bugs are fixed in glibc 2.9.

EXAMPLES

The following program demonstrates the use of some of the macros used for dynamically al?

located CPU sets.

#define_GNU_SOURCE

#include <sched.h>

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <assert.h>

int

main(int argc, char *argv[])

{

cpu_set_t *cpusetp;

size tsize;

int num_cpus;

if (argc < 2) {
fprintf(stderr, "Usage: %s <num-cpus>\n", argv[0]);
exit(EXIT_FAILURE);

}

num_cpus = atoi(argv[1]);

cpusetp = CPU_ALLOC(num_cpus);

if (cpusetp == NULL) {
perror("CPU_ALLOC");
exit(EXIT_FAILURE);

}

size = CPU_ALLOC_SIZE(num_cpus);

CPU_ZERO_S(size, cpusetp);

for (int cpu = 0; cpu < num_cpus; cpu += 2)

CPU_SET_S(cpu, size, cpusetp);

printf("CPU_COUNT() of set: %d\n", CPU_COUNT _S(size, cpusetp));

Page 5/6

CPU_FREE(cpusetp);
exit(EXIT_SUCCESS);
}
SEE ALSO
sched_setaffinity(2), pthread_attr_setaffinity_np(3), pthread_setaffinity _np(3), cpuset(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 CPU_SET(3)

Page 6/6

