FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command '__memalign_hook.3'

$ man __memalign_hook.3
MALLOC_HOOK(3) Linux Programmer's Manual MALLOC_HOOK(3)
NAME

__malloc_hook, __malloc_initialize_hook, __memalign_hook, _ free_hook, _ realloc_hook,

__after_morecore_hook - malloc debugging variables
SYNOPSIS

#include <malloc.h>

void *(*__malloc_hook)(size_t size, const void *caller);

void *(*__realloc_hook)(void *ptr, size_t size, const void *caller);

void *(*__memalign_hook)(size_t alignment, size_t size,

const void *caller);

void (*__free_hook)(void *ptr, const void *caller);

void (*__malloc_initialize_hook)(void);

void (*__after_morecore_hook)(void);
DESCRIPTION

The GNU C library lets you modify the behavior of malloc(3), realloc(3), and free(3) by

specifying appropriate hook functions. You can use these hooks to help you debug programs

that use dynamic memory allocation, for example.

The variable __malloc_initialize_hook points at a function that is called once when the

malloc implementation is initialized. This is a weak variable, so it can be overridden in

the application with a definition like the following:

void (*__malloc_initialize_hook)(void) = my_init_hook;
Now the function my _init_hook() can do the initialization of all hooks.

The four functions pointed to by _ malloc_hook, _ realloc_hook, __ _memalign_hook, Page 1/3



__free_hook have a prototype like the functions malloc(3), realloc(3), memalign(3),
free(3), respectively, except that they have a final argument caller that gives the ad?
dress of the caller of malloc(3), etc.
The variable __after_morecore_hook points at a function that is called each time after
sbrk(2) was asked for more memory.
CONFORMING TO
These functions are GNU extensions.
NOTES
The use of these hook functions is not safe in multithreaded programs, and they are now
deprecated. From glibc 2.24 onwards, the __malloc_initialize_hook variable has been re?
moved from the API. Programmers should instead preempt calls to the relevant functions by
defining and exporting functions such as "malloc" and "free".
EXAMPLES
Here is a short example of how to use these variables.
#include <stdio.h>
#include <malloc.h>
/* Prototypes for our hooks. */
static void my_init_hook(void);
static void *my_malloc_hook(size _t, const void *);
[* Variables to save original hooks. */
static void *(*old_malloc_hook)(size _t, const void *);
[* Override initializing hook from the C library. */
void (*__malloc_initialize_hook) (void) = my_init_hook;
static void

my_init_hook(void)

{
old_malloc_hook = malloc_hook;
__malloc_hook = my_malloc_hook;
}
static void *

my_malloc_hook(size _t size, const void *caller)

{

void *result; Page 2/3



/* Restore all old hooks */
__malloc_hook = old_malloc_hook;
/* Call recursively */
result = malloc(size);
/* Save underlying hooks */
old_malloc_hook = __malloc_hook;
/* printf() might call malloc(), so protect it too. */
printf("malloc(%zu) called from %p returns %p\n",
size, caller, result);
/* Restore our own hooks */
__malloc_hook = my_malloc_hook;
return result;
}
SEE ALSO
mallinfo(3), malloc(3), mcheck(3), mtrace(3)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 MALLOC_HOOK(3)

Page 3/3



