PDF generator

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'aio.7"
$ man aio.7
AlO(7) Linux Programmer's Manual AlO(7)
NAME
aio - POSIX asynchronous I/O overview
DESCRIPTION
The POSIX asynchronous I/0O (AlO) interface allows applications to initiate one or more 1/0O
operations that are performed asynchronously (i.e., in the background). The application
can elect to be notified of completion of the 1/O operation in a variety of ways: by de?
livery of a signal, by instantiation of a thread, or no notification at all.
The POSIX AlO interface consists of the following functions:
aio_read(3)
Enqueue a read request. This is the asynchronous analog of read(2).
aio_write(3)
Enqueue a write request. This is the asynchronous analog of write(2).
aio_fsync(3)
Enqueue a sync request for the 1/O operations on a file descriptor. This is the
asynchronous analog of fsync(2) and fdatasync(2).
aio_error(3)
Obtain the error status of an enqueued 1/O request.
aio_return(3)
Obtain the return status of a completed 1/O request.
aio_suspend(3)
Suspend the caller until one or more of a specified set of I/O requests completes.

aio_cancel(3) Page 1/10

Attempt to cancel outstanding I/O requests on a specified file descriptor.
lio_listio(3)
Enqueue multiple 1/0 requests using a single function call.
The aioch ("asynchronous I/O control block") structure defines parameters that control an
I/O operation. An argument of this type is employed with all of the functions listed
above. This structure has the following form:
#include <aiocb.h>
struct aiocb {

[* The order of these fields is implementation-dependent */

int aio_fildes; /* File descriptor */

off t aio_offset; /* File offset */

volatile void *aio_buf; [* Location of buffer */
size t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority */

struct sigevent aio_sigevent; /* Notification method */
int aio_lio_opcode; /* Operation to be performed;
lio_listio() only */
[* Various implementation-internal fields not shown */
h
/* Operation codes for 'aio_lio_opcode": */
enum { LIO_READ, LIO_WRITE, LIO_NOP };
The fields of this structure are as follows:
aio_fildes
The file descriptor on which the 1/O operation is to be performed.
aio_offset
This is the file offset at which the 1/O operation is to be performed.
aio_buf
This is the buffer used to transfer data for a read or write operation.
aio_nbytes
This is the size of the buffer pointed to by aio_buf.
aio_reqprio
This field specifies a value that is subtracted from the calling thread's real-time

priority in order to determine the priority for execution of this I/O request (see

Page 2/10

pthread_setschedparam(3)). The specified value must be between 0 and the value re?
turned by sysconf(_ SC_AIO_PRIO_DELTA MAX). This field is ignored for file synchro?
nization operations.
aio_sigevent
This field is a structure that specifies how the caller is to be notified when the
asynchronous 1/O operation completes. Possible values for aio_sigevent.sigev_no?
tify are SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_THREAD. See sigevent(7) for further
details.
aio_lio_opcode
The type of operation to be performed; used only for lio_listio(3).
In addition to the standard functions listed above, the GNU C library provides the follow?
ing extension to the POSIX AIO API:
aio_init(3)
Set parameters for tuning the behavior of the glibc POSIX AlO implementation.
ERRORS
EINVAL The aio_reqprio field of the aiocb structure was less than 0, or was greater than
the limit returned by the call sysconf(SC_AIO_PRIO_DELTA_ MAX).
VERSIONS
The POSIX AlO interfaces are provided by glibc since version 2.1.
CONFORMING TO
POSIX.1-2001, POSIX.1-2008.
NOTES
Itis a good idea to zero out the control block buffer before use (see memset(3)). The
control block buffer and the buffer pointed to by aio_buf must not be changed while the
I/O operation is in progress. These buffers must remain valid until the I/O operation
completes.
Simultaneous asynchronous read or write operations using the same aiocb structure yield
undefined results.
The current Linux POSIX AIO implementation is provided in user space by glibc. This has a
number of limitations, most notably that maintaining multiple threads to perform 1/O oper?
ations is expensive and scales poorly. Work has been in progress for some time on a ker?
nel state-machine-based implementation of asynchronous I/O (see io_submit(2), io_setup(2),

io_cancel(2), io_destroy(2), io_getevents(2)), but this implementation hasn't yet matured Page 3/10

to the point where the POSIX AlO implementation can be completely reimplemented using the
kernel system calls.
EXAMPLES
The program below opens each of the files named in its command-line arguments and queues a
request on the resulting file descriptor using aio_read(3). The program then loops, peri?
odically monitoring each of the I/O operations that is still in progress using aio_er?
ror(3). Each of the I/O requests is set up to provide notification by delivery of a sig?
nal. After all /O requests have completed, the program retrieves their status using
aio_return(3).
The SIGQUIT signal (generated by typing control-\) causes the program to request cancella?
tion of each of the outstanding requests using aio_cancel(3).
Here is an example of what we might see when running this program. In this example, the
program queues two requests to standard input, and these are satisfied by two lines of in?
put containing "abc" and "x".
$./a.out /dev/stdin /dev/stdin
opened /dev/stdin on descriptor 3
opened /dev/stdin on descriptor 4
aio_error():
for request 0 (descriptor 3): In progress
for request 1 (descriptor 4): In progress
abc
I/O completion signal received
aio_error():
for request 0 (descriptor 3): 1/0 succeeded
for request 1 (descriptor 4): In progress
aio_error():
for request 1 (descriptor 4): In progress
X
I/0O completion signal received
aio_error():
for request 1 (descriptor 4): 1/0 succeeded
All'l/O requests completed

aio_return():

Page 4/10

for request 0 (descriptor 3): 4
for request 1 (descriptor 4): 2
Program source
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <aio.h>
#include <signal.h>
#define BUF_SIZE 20 /* Size of buffers for read operations */
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)
struct ioRequest{ /* Application-defined structure for tracking
I/O requests */
int reqNum;
int status;
struct aiocb *aiocbp;
2
static volatile sig_atomic_t gotSIGQUIT = 0;
/* On delivery of SIGQUIT, we attempt to
cancel all outstanding I/O requests */
static void /* Handler for SIGQUIT */
quitHandler(int sig)
{
gotSIGQUIT =1;
}
#define IO_SIGNAL SIGUSR1 /* Signal used to notify I/O completion */
static void /* Handler for 1/0O completion signal */
aioSigHandler(int sig, siginfo_t *si, void *ucontext)
{
if (si->si_code == SI_ASYNCIO) {
write(STDOUT_FILENO, "I/O completion signal received\n”, 31);

[* The corresponding ioRequest structure would be available as

Page 5/10

struct ioRequest *ioReq = si->si_value.sival_ptr;
and the file descriptor would then be available via

ioReq->aiocbp->aio_fildes */

int

main(int argc, char *argv[])

{

struct sigaction sa;
ints;
int numRegs; [* Total number of queued I/O requests */
int openRegs; /* Number of 1/0 requests still in progress */
if (argc < 2) {
fprintf(stderr, "Usage: %s <pathname> <pathname>...\n",
argv[0]);
exit(EXIT_FAILURE);
}
numRegs = argc - 1;
/* Allocate our arrays */
struct ioRequest *ioList = calloc(numRegs, sizeof(*ioList));
if (ioList == NULL)
errExit("calloc™);
struct aiocb *aiocbList = calloc(numReqgs, sizeof(*aiocbList));
if (aiocbList == NULL)

errExit("calloc™);

[* Establish handlers for SIGQUIT and the I/O completion signal */

sa.sa_flags = SA_RESTART;

sigemptyset(&sa.sa_mask);

sa.sa_handler = quitHandler;

if (sigaction(SIGQUIT, &sa, NULL) == -1)
errExit("sigaction");

sa.sa_flags = SA_RESTART | SA_SIGINFO;

sa.sa_sigaction = aioSigHandler;

Page 6/10

if (sigaction(IO_SIGNAL, &sa, NULL) ==-1)
errExit("sigaction");

/* Open each file specified on the command line, and queue
a read request on the resulting file descriptor */

for (intj = 0; j < numRegs; j++) {
ioList[j].reqNum =j;
ioList[j].status = EINPROGRESS;

ioList[j].aiocbp = &aiocbList[j];

ioList[j].aiocbp->aio_fildes = open(argv[j + 1], O_RDONLY);

if (ioList[j].aiocbp->aio_fildes == -1)
errExit("open");

printf("opened %s on descriptor %d\n", argv[j + 1],

ioList[j].aiocbp->aio_fildes);

ioList[j].aiocbp->aio_buf = malloc(BUF_SIZE);

if (ioList[j].aiocbp->aio_buf == NULL)
errExit("malloc");

ioList[j].aiocbp->aio_nbytes = BUF_SIZE;

ioList[j].aiocbp->aio_reqprio = 0O;

ioList[j].aiocbp->aio_offset = 0;

ioList[j].aiocbp->aio_sigevent.sigev_notify = SIGEV_SIGNAL;

ioList[j].aiocbp->aio_sigevent.sigev_signo = 10_SIGNAL;
ioList[j].aiocbp->aio_sigevent.sigev_value.sival_ptr =
&ioList[j];
s = aio_read(ioList[j].aiocbp);
if (s==-1)
errExit("aio_read");
}
openReqs = numRegs;
/* Loop, monitoring status of 1/0 requests */
while (openReqs > 0) {
sleep(3); [* Delay between each monitoring step */
if (gotSIGQUIT) {

/* On receipt of SIGQUIT, attempt to cancel each of the

Page 7/10

outstanding I/O requests, and display status returned
from the cancellation requests */
printf("got SIGQUIT; canceling 1/O requests: \n");
for (intj = 0; j < numRegs; j++) {
if (ioList[j].status == EINPROGRESS) {
printf(" Request %d on descriptor %d:", j,
ioList[j].aiocbp->aio_fildes);
s = aio_cancel(ioList[j].aiocbp->aio_fildes,
ioList[j].aiocbp);
if (s == AIO_CANCELED)
printf("1/O canceled\n");
else if (s == AIO_NOTCANCELED)
printf("1/0O not canceled\n");
else if (s == AIO_ALLDONE)
printf("1/O all done\n");
else

perror("aio_cancel");

}
gotSIGQUIT = 0;

/* Check the status of each 1/O request that is still
in progress */
printf("aio_error():\n");
for (intj = 0; j < numRegs; j++) {
if (ioList[j].status == EINPROGRESS) {
printf(" for request %d (descriptor %d): ",
j, ioList[j].aiocbp->aio_fildes);
ioList[j].status = aio_error(ioList[j].aiochp);
switch (ioList[j].status) {
case 0:
printf("1/O succeeded\n™);

break;

Page 8/10

case EINPROGRESS:
printf("In progress\n);
break;

case ECANCELED:
printf("Canceled\n");
break;

default:
perror("aio_error");
break;

}

if (ioList[j].status != EINPROGRESS)

openReqs--;

}

printf("All I/O requests completed\n™);
/* Check status return of all I/O requests */
printf("aio_return():\n");
for (intj = 0; j < numRegs; j++) {
ssize ts;
s = aio_return(ioList[j].aiocbp);
printf(" for request %d (descriptor %d): %zd\n",
J, ioList[j].aiocbp->aio_fildes, s);
}
exit(EXIT_SUCCESS);
}
SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio_cancel(3),
aio_error(3), aio_init(3), aio_read(3), aio_return(3), aio_write(3), lio_listio(3)
"Asynchronous I/O Support in Linux 2.5", Bhattacharya, Pratt, Pulavarty, and Morgan,
Proceedings of the Linux Symposium, 2003,
?https://lwww.kernel.org/doc/ols/2003/0ls2003-pages-351-366.pdf?

COLOPHON

Page 9/10

This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 AIO(7)

Page 10/10

