
Rocky Enterprise Linux 9.2 Manual Pages on command 'aio.7'

$ man aio.7

AIO(7) Linux Programmer's Manual AIO(7)

NAME

 aio - POSIX asynchronous I/O overview

DESCRIPTION

 The POSIX asynchronous I/O (AIO) interface allows applications to initiate one or more I/O

 operations that are performed asynchronously (i.e., in the background). The application

 can elect to be notified of completion of the I/O operation in a variety of ways: by de?

 livery of a signal, by instantiation of a thread, or no notification at all.

 The POSIX AIO interface consists of the following functions:

 aio_read(3)

 Enqueue a read request. This is the asynchronous analog of read(2).

 aio_write(3)

 Enqueue a write request. This is the asynchronous analog of write(2).

 aio_fsync(3)

 Enqueue a sync request for the I/O operations on a file descriptor. This is the

 asynchronous analog of fsync(2) and fdatasync(2).

 aio_error(3)

 Obtain the error status of an enqueued I/O request.

 aio_return(3)

 Obtain the return status of a completed I/O request.

 aio_suspend(3)

 Suspend the caller until one or more of a specified set of I/O requests completes.

 aio_cancel(3) Page 1/10

 Attempt to cancel outstanding I/O requests on a specified file descriptor.

 lio_listio(3)

 Enqueue multiple I/O requests using a single function call.

 The aiocb ("asynchronous I/O control block") structure defines parameters that control an

 I/O operation. An argument of this type is employed with all of the functions listed

 above. This structure has the following form:

 #include <aiocb.h>

 struct aiocb {

 /* The order of these fields is implementation-dependent */

 int aio_fildes; /* File descriptor */

 off_t aio_offset; /* File offset */

 volatile void *aio_buf; /* Location of buffer */

 size_t aio_nbytes; /* Length of transfer */

 int aio_reqprio; /* Request priority */

 struct sigevent aio_sigevent; /* Notification method */

 int aio_lio_opcode; /* Operation to be performed;

 lio_listio() only */

 /* Various implementation-internal fields not shown */

 };

 /* Operation codes for 'aio_lio_opcode': */

 enum { LIO_READ, LIO_WRITE, LIO_NOP };

 The fields of this structure are as follows:

 aio_fildes

 The file descriptor on which the I/O operation is to be performed.

 aio_offset

 This is the file offset at which the I/O operation is to be performed.

 aio_buf

 This is the buffer used to transfer data for a read or write operation.

 aio_nbytes

 This is the size of the buffer pointed to by aio_buf.

 aio_reqprio

 This field specifies a value that is subtracted from the calling thread's real-time

 priority in order to determine the priority for execution of this I/O request (see Page 2/10

 pthread_setschedparam(3)). The specified value must be between 0 and the value re?

 turned by sysconf(_SC_AIO_PRIO_DELTA_MAX). This field is ignored for file synchro?

 nization operations.

 aio_sigevent

 This field is a structure that specifies how the caller is to be notified when the

 asynchronous I/O operation completes. Possible values for aio_sigevent.sigev_no?

 tify are SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_THREAD. See sigevent(7) for further

 details.

 aio_lio_opcode

 The type of operation to be performed; used only for lio_listio(3).

 In addition to the standard functions listed above, the GNU C library provides the follow?

 ing extension to the POSIX AIO API:

 aio_init(3)

 Set parameters for tuning the behavior of the glibc POSIX AIO implementation.

ERRORS

 EINVAL The aio_reqprio field of the aiocb structure was less than 0, or was greater than

 the limit returned by the call sysconf(_SC_AIO_PRIO_DELTA_MAX).

VERSIONS

 The POSIX AIO interfaces are provided by glibc since version 2.1.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 It is a good idea to zero out the control block buffer before use (see memset(3)). The

 control block buffer and the buffer pointed to by aio_buf must not be changed while the

 I/O operation is in progress. These buffers must remain valid until the I/O operation

 completes.

 Simultaneous asynchronous read or write operations using the same aiocb structure yield

 undefined results.

 The current Linux POSIX AIO implementation is provided in user space by glibc. This has a

 number of limitations, most notably that maintaining multiple threads to perform I/O oper?

 ations is expensive and scales poorly. Work has been in progress for some time on a ker?

 nel state-machine-based implementation of asynchronous I/O (see io_submit(2), io_setup(2),

 io_cancel(2), io_destroy(2), io_getevents(2)), but this implementation hasn't yet matured Page 3/10

 to the point where the POSIX AIO implementation can be completely reimplemented using the

 kernel system calls.

EXAMPLES

 The program below opens each of the files named in its command-line arguments and queues a

 request on the resulting file descriptor using aio_read(3). The program then loops, peri?

 odically monitoring each of the I/O operations that is still in progress using aio_er?

 ror(3). Each of the I/O requests is set up to provide notification by delivery of a sig?

 nal. After all I/O requests have completed, the program retrieves their status using

 aio_return(3).

 The SIGQUIT signal (generated by typing control-\) causes the program to request cancella?

 tion of each of the outstanding requests using aio_cancel(3).

 Here is an example of what we might see when running this program. In this example, the

 program queues two requests to standard input, and these are satisfied by two lines of in?

 put containing "abc" and "x".

 $./a.out /dev/stdin /dev/stdin

 opened /dev/stdin on descriptor 3

 opened /dev/stdin on descriptor 4

 aio_error():

 for request 0 (descriptor 3): In progress

 for request 1 (descriptor 4): In progress

 abc

 I/O completion signal received

 aio_error():

 for request 0 (descriptor 3): I/O succeeded

 for request 1 (descriptor 4): In progress

 aio_error():

 for request 1 (descriptor 4): In progress

 x

 I/O completion signal received

 aio_error():

 for request 1 (descriptor 4): I/O succeeded

 All I/O requests completed

 aio_return(): Page 4/10

 for request 0 (descriptor 3): 4

 for request 1 (descriptor 4): 2

 Program source

 #include <fcntl.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <stdio.h>

 #include <errno.h>

 #include <aio.h>

 #include <signal.h>

 #define BUF_SIZE 20 /* Size of buffers for read operations */

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)

 struct ioRequest { /* Application-defined structure for tracking

 I/O requests */

 int reqNum;

 int status;

 struct aiocb *aiocbp;

 };

 static volatile sig_atomic_t gotSIGQUIT = 0;

 /* On delivery of SIGQUIT, we attempt to

 cancel all outstanding I/O requests */

 static void /* Handler for SIGQUIT */

 quitHandler(int sig)

 {

 gotSIGQUIT = 1;

 }

 #define IO_SIGNAL SIGUSR1 /* Signal used to notify I/O completion */

 static void /* Handler for I/O completion signal */

 aioSigHandler(int sig, siginfo_t *si, void *ucontext)

 {

 if (si->si_code == SI_ASYNCIO) {

 write(STDOUT_FILENO, "I/O completion signal received\n", 31);

 /* The corresponding ioRequest structure would be available as Page 5/10

 struct ioRequest *ioReq = si->si_value.sival_ptr;

 and the file descriptor would then be available via

 ioReq->aiocbp->aio_fildes */

 }

 }

 int

 main(int argc, char *argv[])

 {

 struct sigaction sa;

 int s;

 int numReqs; /* Total number of queued I/O requests */

 int openReqs; /* Number of I/O requests still in progress */

 if (argc < 2) {

 fprintf(stderr, "Usage: %s <pathname> <pathname>...\n",

 argv[0]);

 exit(EXIT_FAILURE);

 }

 numReqs = argc - 1;

 /* Allocate our arrays */

 struct ioRequest *ioList = calloc(numReqs, sizeof(*ioList));

 if (ioList == NULL)

 errExit("calloc");

 struct aiocb *aiocbList = calloc(numReqs, sizeof(*aiocbList));

 if (aiocbList == NULL)

 errExit("calloc");

 /* Establish handlers for SIGQUIT and the I/O completion signal */

 sa.sa_flags = SA_RESTART;

 sigemptyset(&sa.sa_mask);

 sa.sa_handler = quitHandler;

 if (sigaction(SIGQUIT, &sa, NULL) == -1)

 errExit("sigaction");

 sa.sa_flags = SA_RESTART | SA_SIGINFO;

 sa.sa_sigaction = aioSigHandler; Page 6/10

 if (sigaction(IO_SIGNAL, &sa, NULL) == -1)

 errExit("sigaction");

 /* Open each file specified on the command line, and queue

 a read request on the resulting file descriptor */

 for (int j = 0; j < numReqs; j++) {

 ioList[j].reqNum = j;

 ioList[j].status = EINPROGRESS;

 ioList[j].aiocbp = &aiocbList[j];

 ioList[j].aiocbp->aio_fildes = open(argv[j + 1], O_RDONLY);

 if (ioList[j].aiocbp->aio_fildes == -1)

 errExit("open");

 printf("opened %s on descriptor %d\n", argv[j + 1],

 ioList[j].aiocbp->aio_fildes);

 ioList[j].aiocbp->aio_buf = malloc(BUF_SIZE);

 if (ioList[j].aiocbp->aio_buf == NULL)

 errExit("malloc");

 ioList[j].aiocbp->aio_nbytes = BUF_SIZE;

 ioList[j].aiocbp->aio_reqprio = 0;

 ioList[j].aiocbp->aio_offset = 0;

 ioList[j].aiocbp->aio_sigevent.sigev_notify = SIGEV_SIGNAL;

 ioList[j].aiocbp->aio_sigevent.sigev_signo = IO_SIGNAL;

 ioList[j].aiocbp->aio_sigevent.sigev_value.sival_ptr =

 &ioList[j];

 s = aio_read(ioList[j].aiocbp);

 if (s == -1)

 errExit("aio_read");

 }

 openReqs = numReqs;

 /* Loop, monitoring status of I/O requests */

 while (openReqs > 0) {

 sleep(3); /* Delay between each monitoring step */

 if (gotSIGQUIT) {

 /* On receipt of SIGQUIT, attempt to cancel each of the Page 7/10

 outstanding I/O requests, and display status returned

 from the cancellation requests */

 printf("got SIGQUIT; canceling I/O requests: \n");

 for (int j = 0; j < numReqs; j++) {

 if (ioList[j].status == EINPROGRESS) {

 printf(" Request %d on descriptor %d:", j,

 ioList[j].aiocbp->aio_fildes);

 s = aio_cancel(ioList[j].aiocbp->aio_fildes,

 ioList[j].aiocbp);

 if (s == AIO_CANCELED)

 printf("I/O canceled\n");

 else if (s == AIO_NOTCANCELED)

 printf("I/O not canceled\n");

 else if (s == AIO_ALLDONE)

 printf("I/O all done\n");

 else

 perror("aio_cancel");

 }

 }

 gotSIGQUIT = 0;

 }

 /* Check the status of each I/O request that is still

 in progress */

 printf("aio_error():\n");

 for (int j = 0; j < numReqs; j++) {

 if (ioList[j].status == EINPROGRESS) {

 printf(" for request %d (descriptor %d): ",

 j, ioList[j].aiocbp->aio_fildes);

 ioList[j].status = aio_error(ioList[j].aiocbp);

 switch (ioList[j].status) {

 case 0:

 printf("I/O succeeded\n");

 break; Page 8/10

 case EINPROGRESS:

 printf("In progress\n");

 break;

 case ECANCELED:

 printf("Canceled\n");

 break;

 default:

 perror("aio_error");

 break;

 }

 if (ioList[j].status != EINPROGRESS)

 openReqs--;

 }

 }

 }

 printf("All I/O requests completed\n");

 /* Check status return of all I/O requests */

 printf("aio_return():\n");

 for (int j = 0; j < numReqs; j++) {

 ssize_t s;

 s = aio_return(ioList[j].aiocbp);

 printf(" for request %d (descriptor %d): %zd\n",

 j, ioList[j].aiocbp->aio_fildes, s);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio_cancel(3),

 aio_error(3), aio_init(3), aio_read(3), aio_return(3), aio_write(3), lio_listio(3)

 "Asynchronous I/O Support in Linux 2.5", Bhattacharya, Pratt, Pulavarty, and Morgan,

 Proceedings of the Linux Symposium, 2003,

 ?https://www.kernel.org/doc/ols/2003/ols2003-pages-351-366.pdf?

COLOPHON Page 9/10

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 AIO(7)

Page 10/10

