
Rocky Enterprise Linux 9.2 Manual Pages on command 'alloc_hugepages.2'

$ man alloc_hugepages.2

ALLOC_HUGEPAGES(2) Linux Programmer's Manual ALLOC_HUGEPAGES(2)

NAME

 alloc_hugepages, free_hugepages - allocate or free huge pages

SYNOPSIS

 void *alloc_hugepages(int key, void *addr, size_t len,

 int prot, int flag);

 int free_hugepages(void *addr);

DESCRIPTION

 The system calls alloc_hugepages() and free_hugepages() were introduced in Linux 2.5.36

 and removed again in 2.5.54. They existed only on i386 and ia64 (when built with CON?

 FIG_HUGETLB_PAGE). In Linux 2.4.20, the syscall numbers exist, but the calls fail with

 the error ENOSYS.

 On i386 the memory management hardware knows about ordinary pages (4 KiB) and huge pages

 (2 or 4 MiB). Similarly ia64 knows about huge pages of several sizes. These system calls

 serve to map huge pages into the process's memory or to free them again. Huge pages are

 locked into memory, and are not swapped.

 The key argument is an identifier. When zero the pages are private, and not inherited by

 children. When positive the pages are shared with other applications using the same key,

 and inherited by child processes.

 The addr argument of free_hugepages() tells which page is being freed: it was the return

 value of a call to alloc_hugepages(). (The memory is first actually freed when all users

 have released it.) The addr argument of alloc_hugepages() is a hint, that the kernel may

 or may not follow. Addresses must be properly aligned. Page 1/2

 The len argument is the length of the required segment. It must be a multiple of the huge

 page size.

 The prot argument specifies the memory protection of the segment. It is one of PROT_READ,

 PROT_WRITE, PROT_EXEC.

 The flag argument is ignored, unless key is positive. In that case, if flag is IPC_CREAT,

 then a new huge page segment is created when none with the given key existed. If this

 flag is not set, then ENOENT is returned when no segment with the given key exists.

RETURN VALUE

 On success, alloc_hugepages() returns the allocated virtual address, and free_hugepages()

 returns zero. On error, -1 is returned, and errno is set appropriately.

ERRORS

 ENOSYS The system call is not supported on this kernel.

FILES

 /proc/sys/vm/nr_hugepages

 Number of configured hugetlb pages. This can be read and written.

 /proc/meminfo

 Gives info on the number of configured hugetlb pages and on their size in the three

 variables HugePages_Total, HugePages_Free, Hugepagesize.

CONFORMING TO

 These calls are specific to Linux on Intel processors, and should not be used in programs

 intended to be portable.

NOTES

 These system calls are gone; they existed only in Linux 2.5.36 through to 2.5.54. Now the

 hugetlbfs filesystem can be used instead. Memory backed by huge pages (if the CPU sup?

 ports them) is obtained by using mmap(2) to map files in this virtual filesystem.

 The maximal number of huge pages can be specified using the hugepages= boot parameter.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 ALLOC_HUGEPAGES(2)

Page 2/2

