
Rocky Enterprise Linux 9.2 Manual Pages on command 'apparmor.d.5'

$ man apparmor.d.5

APPARMOR.D(5) AppArmor APPARMOR.D(5)

NAME

 apparmor.d - syntax of security profiles for AppArmor.

DESCRIPTION

 AppArmor profiles describe mandatory access rights granted to given programs and are fed

 to the AppArmor policy enforcement module using apparmor_parser(8). This man page

 describes the format of the AppArmor configuration files; see apparmor(7) for an overview

 of AppArmor.

FORMAT

 AppArmor policy is written in a declarative language, in which the order of rules within a

 given section or block does not matter. Policy is by convention written so that it is

 contained in multiple files, but this is not a requirement. It could just as easily be

 written in a single file. The policy language is compiled to a architecture independent

 binary format that is loaded into the kernel for enforcement.

 The base unit of AppArmor confinement is the profile. It contains a set of rules which are

 enforced when the profile is associated with a running program. The rules within the

 profile provide a whitelist of different permission that are allowed, along with a few

 other special rules.

 The text in AppArmor policy is split into two sections, the preamble and the profile

 definitions. The preamble must occur at the head of the file and once profile definitions

 begin, no more preamble rules are allowed (even in files that are included into the

 profile). When AppArmor policy (set of profiles) is split across multiple files, each file

 can have its own preamble section, which may be the same or different from other files Page 1/35

 preamble. Files included within a profile section can not have a preamble section.

 The following is a BNF-style description of AppArmor policy configuration files; see below

 for an example AppArmor policy file. AppArmor configuration files are line-oriented; #

 introduces a comment, similar to shell scripting languages. The exception to this rule is

 that #include will include the contents of a file inline to the policy; this behaviour is

 modelled after cpp(1).

 PROFILE FILE = ([PREAMBLE] [PROFILE])*

 PREAMBLE = (COMMENT | VARIABLE ASSIGNMENT | ALIAS RULE | INCLUDE | ABI)*

 Variable assignment and alias rules must come before the profile.

 VARIABLE ASSIGNMENT = VARIABLE ('=' | '+=') (space separated values)

 VARIABLE = '@{' ALPHA [(ALPHANUMERIC | '_') ...] '}'

 ALIAS RULE = 'alias' ABS PATH '->' REWRITTEN ABS PATH ','

 INCLUDE = ('#include' | 'include') ['if exists'] (ABS PATH | MAGIC PATH)

 ABI = ('abi') (ABS PATH | MAGIC PATH) ','

 ABS PATH = '"' path '"' (the path is passed to open(2))

 MAGIC PATH = '<' relative path '>'

 The path is relative to /etc/apparmor.d/.

 COMMENT = '#' TEXT ['\r'] '\n'

 TEXT = any characters

 PROFILE = (PROFILE HEAD) [ATTACHMENT SPECIFICATION] [PROFILE FLAG CONDS] '{' (

 RULES)* '}'

 PROFILE HEAD = ['profile'] FILEGLOB | 'profile' PROFILE NAME

 PROFILE NAME (UNQUOTED PROFILE NAME | QUOTED PROFILE NAME)

 QUOTED PROFILE NAME = '"' UNQUOTED PROFILE NAME '"'

 UNQUOTED PROFILE NAME = (must start with alphanumeric character (after variable

 expansion), or '/' AARE have special meanings; see below. May include VARIABLE. Rules

 with embedded spaces or tabs must be quoted.)

 ATTACHMENT SPECIFICATION = [PROFILE_EXEC_COND] [PROFILE XATTR CONDS]

 PROFILE_EXEC_COND = FILEGLOB

 PROFILE XATTR CONDS = ['xattrs='] '(' comma or white space separated list of

 PROFILE XATTR ')'

 PROFILE XATTR = extended attribute name '=' XATTR VALUE FILEGLOB

 XATTR VALUE FILEGLOB = FILEGLOB Page 2/35

 PROFILE FLAG CONDS = ['flags='] '(' comma or white space separated list of PROFILE

 FLAGS ')'

 PROFILE FLAGS = PROFILE MODE | AUDIT_MODE | 'mediate_deleted' | 'attach_disconnected'

 | 'chroot_relative'

 PROFILE MODE = 'enforce' | 'complain' | 'kill' | 'unconfined'

 AUDIT MODE = 'audit'

 RULES = [(LINE RULES | COMMA RULES ',' | BLOCK RULES)

 LINE RULES = (COMMENT | INCLUDE) ['\r'] '\n'

 COMMA RULES = (CAPABILITY RULE | NETWORK RULE | MOUNT RULE | PIVOT ROOT RULE | UNIX

 RULE | FILE RULE | LINK RULE | CHANGE_PROFILE RULE | RLIMIT RULE | DBUS RULE | MQUEUE

 RULE)

 BLOCK RULES = (SUBPROFILE | HAT | QUALIFIER BLOCK)

 SUBPROFILE = 'profile' PROFILE NAME [ATTACHMENT SPECIFICATION] [PROFILE FLAG CONDS

] '{' (RULES)* '}'

 HAT = ('hat' | '^') HATNAME [PROFILE FLAG CONDS] '{' (RULES)* '}'

 HATNAME = (must start with alphanumeric character. See aa_change_hat(2) for a

 description of how this "hat" is used. If '^' is used to start a hat then there is no

 space between the '^' and HATNAME)

 QUALIFIER BLOCK = QUALIFIERS BLOCK

 ACCESS TYPE = ('allow' | 'deny')

 QUALIFIERS = ['audit'] [ACCESS TYPE]

 CAPABILITY RULE = [QUALIFIERS] 'capability' [CAPABILITY LIST]

 CAPABILITY LIST = (CAPABILITY)+

 CAPABILITY = (lowercase capability name without 'CAP_' prefix; see capabilities(7))

 NETWORK RULE = [QUALIFIERS] 'network' [DOMAIN] [TYPE | PROTOCOL]

 DOMAIN = ('unix' | 'inet' | 'ax25' | 'ipx' | 'appletalk' | 'netrom' | 'bridge' |

 'atmpvc' | 'x25' | 'inet6' | 'rose' | 'netbeui' | 'security' | 'key' | 'netlink' |

 'packet' | 'ash' | 'econet' | 'atmsvc' | 'rds' | 'sna' | 'irda' | 'pppox' | 'wanpipe'

 | 'llc' | 'ib' | 'mpls' | 'can' | 'tipc' | 'bluetooth' | 'iucv' | 'rxrpc' | 'isdn' |

 'phonet' | 'ieee802154' | 'caif' | 'alg' | 'nfc' | 'vsock' | 'kcm' | 'qipcrtr' | 'smc'

 | 'xdp' | 'mctp') ','

 TYPE = ('stream' | 'dgram' | 'seqpacket' | 'rdm' | 'raw' | 'packet')

 PROTOCOL = ('tcp' | 'udp' | 'icmp') Page 3/35

 MOUNT RULE = (MOUNT | REMOUNT | UMOUNT)

 MOUNT = [QUALIFIERS] 'mount' [MOUNT CONDITIONS] [SOURCE FILEGLOB] ['->' [

 MOUNTPOINT FILEGLOB]

 REMOUNT = [QUALIFIERS] 'remount' [MOUNT CONDITIONS] MOUNTPOINT FILEGLOB

 UMOUNT = [QUALIFIERS] 'umount' [MOUNT CONDITIONS] MOUNTPOINT FILEGLOB

 MOUNT CONDITIONS = [('fstype' | 'vfstype') ('=' | 'in') MOUNT FSTYPE EXPRESSION]

 ['options' ('=' | 'in') MOUNT FLAGS EXPRESSION]

 MOUNT FSTYPE EXPRESSION = (MOUNT FSTYPE LIST | MOUNT EXPRESSION)

 MOUNT FSTYPE LIST = Comma separated list of valid filesystem and virtual filesystem

 types (eg ext4, debugfs, devfs, etc)

 MOUNT FLAGS EXPRESSION = (MOUNT FLAGS LIST | MOUNT EXPRESSION)

 MOUNT FLAGS LIST = Comma separated list of MOUNT FLAGS.

 MOUNT FLAGS = ('ro' | 'rw' | 'nosuid' | 'suid' | 'nodev' | 'dev' | 'noexec' | 'exec'

 | 'sync' | 'async' | 'remount' | 'mand' | 'nomand' | 'dirsync' | 'noatime' | 'atime' |

 'nodiratime' | 'diratime' | 'bind' | 'rbind' | 'move' | 'verbose' | 'silent' | 'loud'

 | 'acl' | 'noacl' | 'unbindable' | 'runbindable' | 'private' | 'rprivate' | 'slave' |

 'rslave' | 'shared' | 'rshared' | 'relatime' | 'norelatime' | 'iversion' |

 'noiversion' | 'strictatime' | 'nouser' | 'user')

 MOUNT EXPRESSION = (ALPHANUMERIC | AARE) ...

 MQUEUE_RULE = [QUALIFIERS] 'mqueue' [MQUEUE ACCESS PERMISSIONS] [MQUEUE TYPE] [

 MQUEUE LABEL] [MQUEUE NAME]

 MQUEUE ACCESS PERMISSIONS = MQUEUE ACCESS | MQUEUE ACCESS LIST

 MQUEUE ACCESS LIST = '(' Comma or space separated list of MQUEUE ACCESS ')'

 MQUEUE ACCESS = ('r' | 'w' | 'rw' | 'read' | 'write' | 'create' | 'open' | 'delete' |

 'getattr' | 'setattr')

 MQUEUE TYPE = 'type' '=' ('posix' | 'sysv')

 MQUEUE LABEL = 'label' '=' '(' '"' AARE '"' | AARE ')'

 MQUEUE NAME = AARE

 PIVOT ROOT RULE = [QUALIFIERS] pivot_root [oldroot=OLD PUT FILEGLOB] [NEW ROOT

 FILEGLOB] ['->' PROFILE NAME]

 SOURCE FILEGLOB = FILEGLOB

 MOUNTPOINT FILEGLOB = FILEGLOB

 OLD PUT FILEGLOB = FILEGLOB Page 4/35

 PTRACE_RULE = [QUALIFIERS] 'ptrace' [PTRACE ACCESS PERMISSIONS] [PTRACE PEER]

 PTRACE ACCESS PERMISSIONS = PTRACE ACCESS | PTRACE ACCESS LIST

 PTRACE ACCESS LIST = '(' Comma or space separated list of PTRACE ACCESS ')'

 PTRACE ACCESS = ('r' | 'w' | 'rw' | 'read' | 'readby' | 'trace' | 'tracedby')

 PTRACE PEER = 'peer' '=' AARE

 SIGNAL_RULE = [QUALIFIERS] 'signal' [SIGNAL ACCESS PERMISSIONS] [SIGNAL SET] [

 SIGNAL PEER]

 SIGNAL ACCESS PERMISSIONS = SIGNAL ACCESS | SIGNAL ACCESS LIST

 SIGNAL ACCESS LIST = '(' Comma or space separated list of SIGNAL ACCESS ')'

 SIGNAL ACCESS = ('r' | 'w' | 'rw' | 'read' | 'write' | 'send' | 'receive')

 SIGNAL SET = 'set' '=' '(' SIGNAL LIST ')'

 SIGNAL LIST = Comma or space separated list of SIGNALS

 SIGNALS = ('hup' | 'int' | 'quit' | 'ill' | 'trap' | 'abrt' | 'bus' | 'fpe' | 'kill'

 | 'usr1' | 'segv' | 'usr2' | 'pipe' | 'alrm' | 'term' | 'stkflt' | 'chld' | 'cont' |

 'stop' | 'stp' | 'ttin' | 'ttou' | 'urg' | 'xcpu' | 'xfsz' | 'vtalrm' | 'prof' |

 'winch' | 'io' | 'pwr' | 'sys' | 'emt' | 'exists' | 'rtmin+0' ... 'rtmin+32')

 SIGNAL PEER = 'peer' '=' AARE

 DBUS RULE = (DBUS MESSAGE RULE | DBUS SERVICE RULE | DBUS EAVESDROP RULE | DBUS

 COMBINED RULE)

 DBUS MESSAGE RULE = [QUALIFIERS] 'dbus' [DBUS ACCESS EXPRESSION] [DBUS BUS] [

 DBUS PATH] [DBUS INTERFACE] [DBUS MEMBER] [DBUS PEER]

 DBUS SERVICE RULE = [QUALIFIERS] 'dbus' [DBUS ACCESS EXPRESSION] [DBUS BUS] [

 DBUS NAME]

 DBUS EAVESDROP RULE = [QUALIFIERS] 'dbus' [DBUS ACCESS EXPRESSION] [DBUS BUS]

 DBUS COMBINED RULE = [QUALIFIERS] 'dbus' [DBUS ACCESS EXPRESSION] [DBUS BUS]

 DBUS ACCESS EXPRESSION = (DBUS ACCESS | '(' DBUS ACCESS LIST ')')

 DBUS BUS = 'bus' '=' '(' 'system' | 'session' | '"' AARE '"' | AARE ')'

 DBUS PATH = 'path' '=' '(' '"' AARE '"' | AARE ')'

 DBUS INTERFACE = 'interface' '=' '(' '"' AARE '"' | AARE ')'

 DBUS MEMBER = 'member' '=' '(' '"' AARE '"' | AARE ')'

 DBUS PEER = 'peer' '=' '(' [DBUS NAME] [DBUS LABEL] ')'

 DBUS NAME = 'name' '=' '(' '"' AARE '"' | AARE ')'

 DBUS LABEL = 'label' '=' '(' '"' AARE '"' | AARE ')' Page 5/35

 DBUS ACCESS LIST = Comma separated list of DBUS ACCESS

 DBUS ACCESS = ('send' | 'receive' | 'bind' | 'eavesdrop' | 'r' | 'read' | 'w' |

 'write' | 'rw')

 Some accesses are incompatible with some rules; see below.

 AARE = ?*[]{}^

 See below for meanings.

 UNIX RULE = [QUALIFIERS] 'unix' [UNIX ACCESS EXPR] [UNIX RULE CONDS] [UNIX

 LOCAL EXPR] [UNIX PEER EXPR]

 UNIX ACCESS EXPR = (UNIX ACCESS | UNIX ACCESS LIST)

 UNIX ACCESS = ('create' | 'bind' | 'listen' | 'accept' | 'connect' | 'shutdown' |

 'getattr' | 'setattr' | 'getopt' | 'setopt' | 'send' | 'receive' | 'r' | 'w' | 'rw')

 Some access modes are incompatible with some rules or require additional parameters.

 UNIX ACCESS LIST = '(' UNIX ACCESS ([','] UNIX ACCESS)* ')'

 UNIX RULE CONDS = (TYPE COND | PROTO COND)

 Each cond can appear at most once.

 TYPE COND = 'type' '=' (AARE | '(' ('"' AARE '"' | AARE)+ ')')

 PROTO COND = 'protocol' '=' (AARE | '(' ('"' AARE '"' | AARE)+ ')')

 UNIX LOCAL EXPR = (UNIX ADDRESS COND | UNIX LABEL COND | UNIX ATTR COND | UNIX OPT

 COND)*

 Each cond can appear at most once.

 UNIX PEER EXPR = 'peer' '=' (UNIX ADDRESS COND | UNIX LABEL COND)+

 Each cond can appear at most once.

 UNIX ADDRESS COND 'addr' '=' (AARE | '(' '"' AARE '"' | AARE ')')

 UNIX LABEL COND 'label' '=' (AARE | '(' '"' AARE '"' | AARE ')')

 UNIX ATTR COND 'attr' '=' (AARE | '(' '"' AARE '"' | AARE ')')

 UNIX OPT COND 'opt' '=' (AARE | '(' '"' AARE '"' | AARE ')')

 RLIMIT RULE = 'set' 'rlimit' [RLIMIT '<=' RLIMIT VALUE]

 RLIMIT = ('cpu' | 'fsize' | 'data' | 'stack' | 'core' | 'rss' | 'nofile' | 'ofile' |

 'as' | 'nproc' | 'memlock' | 'locks' | 'sigpending' | 'msgqueue' | 'nice' | 'rtprio' |

 'rttime')

 RLIMIT VALUE = (RLIMIT SIZE | RLIMIT NUMBER | RLIMIT TIME | RLIMIT NICE)

 RLIMIT SIZE = NUMBER ('K' | 'M' | 'G')

 Only applies to RLIMIT of 'fsize', 'data', 'stack', 'core', 'rss', 'as', 'memlock', Page 6/35

 'msgqueue'.

 RLIMIT NUMBER = number from 0 to max rlimit value.

 Only applies to RLIMIT of 'ofile', 'nofile', 'locks', 'sigpending', 'nproc',

 'rtprio'.

 RLIMIT TIME = NUMBER ('us' | 'microsecond' | 'microseconds' | 'ms' | 'millisecond' |

 'milliseconds' | 's' | 'sec' | 'second' | 'seconds' | 'min' | 'minute' | 'minutes' |

 'h' | 'hour' | 'hours' | 'd' | 'day' | 'days' | 'week' | 'weeks')

 Only applies to RLIMIT of 'cpu' and 'rttime'. RLIMIT 'cpu' only allows units >=

 'seconds'.

 RLIMIT NICE = a number between -20 and 19.

 Only applies to RLIMIT of 'nice'.

 FILE RULE = [QUALIFIERS] ['owner'] ('file' | ['file'] (FILEGLOB ACCESS |

 ACCESS FILEGLOB) ['->' EXEC TARGET])

 FILEGLOB = (QUOTED FILEGLOB | UNQUOTED FILEGLOB)

 QUOTED FILEGLOB = '"' UNQUOTED FILEGLOB '"'

 UNQUOTED FILEGLOB = (must start with '/' (after variable expansion), AARE have special

 meanings; see below. May include VARIABLE. Rules with embedded spaces or tabs must be

 quoted. Rules must end with '/' to apply to directories.)

 ACCESS = ('r' | 'w' | 'a' | 'l' | 'k' | 'm' | EXEC TRANSITION)+ (not all

 combinations are allowed; see below.)

 EXEC TRANSITION = ('ix' | 'ux' | 'Ux' | 'px' | 'Px' | 'cx' | 'Cx' | 'pix' | 'Pix' |

 'cix' | 'Cix' | 'pux' | 'PUx' | 'cux' | 'CUx' | 'x')

 A bare 'x' is only allowed in rules with the deny qualifier, everything else only

 without the deny qualifier.

 EXEC TARGET = name

 Requires EXEC TRANSITION specified.

 LINK RULE = QUALIFIERS ['owner'] 'link' ['subset'] FILEGLOB '->' FILEGLOB

 ALPHA = ('a', 'b', 'c', ... 'z', 'A', 'B', ... 'Z')

 ALPHANUMERIC = ('0', '1', '2', ... '9', 'a', 'b', 'c', ... 'z', 'A', 'B', ... 'Z')

 CHANGE_PROFILE RULE = 'change_profile' [[EXEC MODE] EXEC COND] ['->' PROFILE NAME

]

 EXEC_MODE = ('safe' | 'unsafe')

 EXEC COND = FILEGLOB Page 7/35

 All resources and programs need a full path. There may be any number of subprofiles (aka

 child profiles) in a profile, limited only by kernel memory. Subprofile names are limited

 to 974 characters. Child profiles can be used to confine an application in a special way,

 or when you want the child to be unconfined on the system, but confined when called from

 the parent. Hats are a special child profile that can be used with the aa_change_hat(2)

 API call. Applications written or modified to use aa_change_hat(2) can take advantage of

 subprofiles to run under different confinements, dependent on program logic. Several

 aa_change_hat(2)-aware applications exist, including an Apache module, mod_apparmor(5); a

 PAM module, pam_apparmor; and a Tomcat valve, tomcat_apparmor. Applications written or

 modified to use change_profile(2) transition permanently to the specified profile. libvirt

 is one such application.

 Profile Head

 The profile head consists of a required name that is unique and optional attachment

 conditionals and control flags.

 Name

 The name of the profile is its identifier. It is what is displayed during introspection

 (eg. ps -Z), and defines how the profile is referenced by policy rules for any policy

 interaction via ipc or domain changes. It is recommended that the name be kept short and

 have meaning for the application it is being applied eg. firefox for the firefox web

 browser or its functional role eg. log_admin.

 If the name is an applications full absolute path name eg. /usr/bin/firefox and an exec

 attachment conditional is not specified the name is also used as the profile's exec

 attachment conditional. This use however has been deprecated and is discouraged as it

 makes for long names that can make profile rules difficult to understand, and may not be

 fully displayed by some introspection tools.

 Attachment Conditionals

 The attachment conditionals are used during profile changes to determine whether a profile

 is a match for the proposed profile transition. The attachment conditionals are optional,

 how and when they are applied is determined by the specific condition(s) used.

 When attachment conditionals are used, the attachment conditionals for all profiles in the

 namespace will be evaluated. The profile with the set of attachments that result in the

 best match will become the new profile after a transition operation. Attachments that

 don't match will result in the profile not being available for transition. Page 8/35

 If no conditionals are specified the profile will only be used if a transition explicitly

 specifies the profile name.

 Exec Attachment Conditional

 The exec attachment conditional governs how closely the profile matches an executable

 program. This conditional is only used during an exec operation when the matching exec

 rule specifies either a px or cx (or their derivatives) transition type. The exec

 attachment conditional will also be used by tasks that are unconfined as they use a pix

 transition rule.

 If there are no attachment matches then it is up to the exec rule to determine what

 happens (fail or a fallback option).

 Note: see profile Name for information around using the profile name as an attachment

 conditional.

 Exec attachment conditionals can contain variable names and pattern matching. They use a

 longest left match heuristic to deterime the winner in the case of multiple matches at run

 time. The exact implementation of this resolution is kernel specific and has improved over

 time, while retaining backwards compatibility. If the heuristic can not determine a winner

 between multiple matches the exec will be denied.

 Extended Attributes Attachment Conditional

 AppArmor profiles have the ability to target files based on their xattr(7) values in

 addition to their path. For example, the following profile matches files in /usr/bin with

 the attribute "security.apparmor" and value "trusted":

 /usr/bin/* xattrs(security.apparmor="trusted") {

 # ...

 }

 See apparmor_xattrs(7) for further details.

 Flags

 The profile flags allow modifying the behavior of the profile. If a profile flag is

 specified it takes priority over any conflicting flags that have been specified by rules

 in the profile body.

 Profile Mode

 The profile mode allow controlling the enforcement behavior of the profile rules.

 If no mode is specified the profile defaults to enforce mode.

 enforce For a given action, if the profile rules do not grant permission the action will Page 9/35

 be denied, with an EACCES or EPERM error code returned to userspace, and the violation

 will be logged with a tag of the access being DENIED.

 kill This is a variant of enforce mode where in addition to returning EACCES or EPERM for

 a violation, the task is also sent a signal to kill it.

 complain For a given action, if the profile rules do not grant permission the action will

 be allowed, but the violation will be logged with a tag of the access being ALLOWED.

 unconfined This mode allows a task confined by the profile to behave as though they are

 unconfined. This mode allow for an unconfined behavior that can be later changed to

 confinement by using profile replacement. This mode is should not be used under regular

 deployment but can be useful during debugging and some system initialization scenarios.

 Audit Mode

 The audit mode allows control of how AppArmor messages are are logged to the audit system.

 audit This flag causes all actions whether allowed or denied to be logged.

 Misc modes

 mediate_deleted This forces AppArmor to mediate deleted files as if they still exist in

 the file system.

 attach_disconnected This forces AppArmor to attach disconnected objects to the task's

 namespace and mediate them as though they are part of the namespace. WARNING this mode is

 unsafe and can result in aliasing and access to objects that should not be allowed. Its

 intent is a debug and policy development tool.

 chroot_relative This forces file names to be relative to a chroot and behave as if the

 chroot is a mount namespace.

 Access Modes

 File permission access modes consists of combinations of the following modes:

 r - read

 w - write -- conflicts with append

 a - append -- conflicts with write

 ux - unconfined execute

 Ux - unconfined execute -- scrub the environment

 px - discrete profile execute

 Px - discrete profile execute -- scrub the environment

 cx - transition to subprofile on execute

 Cx - transition to subprofile on execute -- scrub the environment Page 10/35

 ix - inherit execute

 pix - discrete profile execute with inherit fallback

 Pix - discrete profile execute with inherit fallback -- scrub the environment

 cix - transition to subprofile on execute with inherit fallback

 Cix - transition to subprofile on execute with inherit fallback -- scrub the

 environment

 pux - discrete profile execute with fallback to unconfined

 PUx - discrete profile execute with fallback to unconfined -- scrub the environment

 cux - transition to subprofile on execute with fallback to unconfined

 CUx - transition to subprofile on execute with fallback to unconfined -- scrub the

 environment

 deny x - disallow execute (in rules with the deny qualifier)

 m - allow PROT_EXEC with mmap(2) calls

 l - link

 k - lock

 Access Modes Details

 r - Read mode

 Allows the program to have read access to the file or directory listing. Read access

 is required for shell scripts and other interpreted content.

 w - Write mode

 Allows the program to have write access to the file. Files and directories must have

 this permission if they are to be unlinked (removed.) Write mode is not required on a

 directory to rename or create files within the directory.

 This mode conflicts with append mode.

 a - Append mode

 Allows the program to have a limited appending only write access to the file. Append

 mode will prevent an application from opening the file for write unless it passes the

 O_APPEND parameter flag on open.

 The mode conflicts with Write mode.

 ux - Unconfined execute mode

 Allows the program to execute the program without any AppArmor profile being applied

 to the program.

 This mode is useful when a confined program needs to be able to perform a privileged Page 11/35

 operation, such as rebooting the machine. By placing the privileged section in another

 executable and granting unconfined execution rights, it is possible to bypass the

 mandatory constraints imposed on all confined processes. For more information on what

 is constrained, see the apparmor(7) man page.

 WARNING 'ux' should only be used in very special cases. It enables the designated

 child processes to be run without any AppArmor protection. 'ux' does not scrub the

 environment of variables such as LD_PRELOAD; as a result, the calling domain may have

 an undue amount of influence over the callee. Use this mode only if the child

 absolutely must be run unconfined and LD_PRELOAD must be used. Any profile using this

 mode provides negligible security. Use at your own risk.

 Incompatible with other exec transition modes and the deny qualifier.

 Ux - unconfined execute -- scrub the environment

 'Ux' allows the named program to run in 'ux' mode, but AppArmor will invoke the Linux

 Kernel's unsafe_exec routines to scrub the environment, similar to setuid programs.

 (See ld.so(8) for some information on setuid/setgid environment scrubbing.)

 WARNING 'Ux' should only be used in very special cases. It enables the designated

 child processes to be run without any AppArmor protection. Use this mode only if the

 child absolutely must be run unconfined. Use at your own risk.

 Incompatible with other exec transition modes and the deny qualifier.

 px - Discrete Profile execute mode

 This mode requires that a discrete security profile is defined for a program executed

 and forces an AppArmor domain transition. If there is no profile defined then the

 access will be denied.

 WARNING 'px' does not scrub the environment of variables such as LD_PRELOAD; as a

 result, the calling domain may have an undue amount of influence over the callee.

 Incompatible with other exec transition modes and the deny qualifier.

 Px - Discrete Profile execute mode -- scrub the environment

 'Px' allows the named program to run in 'px' mode, but AppArmor will invoke the Linux

 Kernel's unsafe_exec routines to scrub the environment, similar to setuid programs.

 (See ld.so(8) for some information on setuid/setgid environment scrubbing.)

 Incompatible with other exec transition modes and the deny qualifier.

 cx - Transition to Subprofile execute mode

 This mode requires that a local security profile is defined and forces an AppArmor Page 12/35

 domain transition to the named profile. If there is no profile defined then the access

 will be denied.

 WARNING 'cx' does not scrub the environment of variables such as LD_PRELOAD; as a

 result, the calling domain may have an undue amount of influence over the callee.

 Incompatible with other exec transition modes and the deny qualifier.

 Cx - Transition to Subprofile execute mode -- scrub the environment

 'Cx' allows the named program to run in 'cx' mode, but AppArmor will invoke the Linux

 Kernel's unsafe_exec routines to scrub the environment, similar to setuid programs.

 (See ld.so(8) for some information on setuid/setgid environment scrubbing.)

 Incompatible with other exec transition modes and the deny qualifier.

 ix - Inherit execute mode

 Prevent the normal AppArmor domain transition on execve(2) when the profiled program

 executes the named program. Instead, the executed resource will inherit the current

 profile.

 This mode is useful when a confined program needs to call another confined program

 without gaining the permissions of the target's profile, or losing the permissions of

 the current profile. There is no version to scrub the environment because 'ix'

 executions don't change privileges.

 Incompatible with other exec transition modes and the deny qualifier.

 Profile transition with inheritance fallback execute mode

 These modes attempt to perform a domain transition as specified by the matching

 permission (shown below) and if that transition fails to find the matching profile the

 domain transition proceeds using the 'ix' transition mode.

 'Pix' == 'Px' with fallback to 'ix'

 'pix' == 'px' with fallback to 'ix'

 'Cix' == 'Cx' with fallback to 'ix'

 'cix' == 'cx' with fallback to 'ix'

 Incompatible with other exec transition modes and the deny qualifier.

 Profile transition with unconfined fallback execute mode

 These modes attempt to perform a domain transition as specified by the matching

 permission (shown below) and if that transition fails to find the matching profile the

 domain transition proceeds using the 'ux' transition mode if 'pux', 'cux' or the 'Ux'

 transition mode if 'PUx', 'CUx' is used. Page 13/35

 'PUx' == 'Px' with fallback to 'Ux'

 'pux' == 'px' with fallback to 'ux'

 'CUx' == 'Cx' with fallback to 'Ux'

 'cux' == 'cx' with fallback to 'ux'

 Incompatible with other exec transition modes and the deny qualifier.

 deny x - Deny execute

 For rules including the deny modifier, only 'x' is allowed to deny execute.

 The 'ix', 'Px', 'px', 'Cx', 'cx' and the fallback modes conflict with the deny

 modifier.

 Directed profile transitions

 The directed ('px', 'Px', 'pix', 'Pix', 'pux', 'PUx') profile and subprofile ('cx',

 'Cx', 'cix', 'Cix', 'cux', 'CUx') transitions normally determine the profile to

 transition to from the executable name. It is however possible to specify the name of

 the profile that the transition should use.

 The name of the profile to transition to is specified using the '->' followed by the

 name of the profile to transition to. Eg.

 /bin/** px -> profile,

 Incompatible with other exec transition modes.

 m - Allow executable mapping

 This mode allows a file to be mapped into memory using mmap(2)'s PROT_EXEC flag. This

 flag marks the pages executable; it is used on some architectures to provide non-

 executable data pages, which can complicate exploit attempts. AppArmor uses this mode

 to limit which files a well-behaved program (or all programs on architectures that

 enforce non-executable memory access controls) may use as libraries, to limit the

 effect of invalid -L flags given to ld(1) and LD_PRELOAD, LD_LIBRARY_PATH, given to

 ld.so(8).

 l - Link mode

 Allows the program to be able to create a link with this name. When a link is

 created, the new link MUST have a subset of permissions as the original file (with the

 exception that the destination does not have to have link access.) If there is an 'x'

 rule on the new link, it must match the original file exactly.

 k - lock mode

 Allows the program to be able lock a file with this name. This permission covers both Page 14/35

 advisory and mandatory locking.

 leading OR trailing access permissions

 File rules can be specified with the access permission either leading or trailing the

 file glob. Eg.

 rw /**, # leading permissions

 /** rw, # trailing permissions

 When leading permissions are used further rule options and context may be allowed, Eg.

 l /foo -> /bar, # lead 'l' link permission is equivalent to link rules

 Link rules

 Link rules allow specifying permission to form a hard link as a link target pair. If the

 subset condition is specified then the permissions to access the link file must be a

 subset of the profiles permissions to access the target file. If there is an 'x' rule on

 the new link, it must match the original file exactly.

 Eg.

 /file1 r,

 /file2 rwk,

 /link* rw,

 link subset /link* -> /**,

 The link rule allows linking of /link to both /file1 or /file2 by name however because the

 /link file has 'rw' permissions it is not allowed to link to /file1 because that would

 grant an access path to /file1 with more permissions than the 'r' permissions the profile

 specifies.

 A link of /link to /file2 would be allowed because the 'rw' permissions of /link are a

 subset of the 'rwk' permissions for /file1.

 The link rule is equivalent to specifying the 'l' link permission as a leading permission

 with no other file access permissions. When this is done the link rule options can be

 specified.

 The following link rule is equivalent to the 'l' permission file rule

 link /foo -> bar,

 l /foo -> /bar,

 File rules that specify the 'l' permission and don't specify the extend link permissions

 map to link rules as follows.

 /foo l, Page 15/35

 l /foo,

 link subset /foo -> /**,

 Comments

 Comments start with # and may begin at any place within a line. The comment ends when the

 line ends. This is the same comment style as shell scripts.

 Capabilities

 The only capabilities a confined process may use may be enumerated; for the complete list,

 please refer to capabilities(7). Note that granting some capabilities renders AppArmor

 confinement for that domain advisory; while open(2), read(2), write(2), etc., will still

 return error when access is not granted, some capabilities allow loading kernel modules,

 arbitrary access to IPC, ability to bypass discretionary access controls, and other

 operations that are typically reserved for the root user.

 Network Rules

 AppArmor supports simple coarse grained network mediation. The network rule restrict all

 socket(2) based operations. The mediation done is a coarse-grained check on whether a

 socket of a given type and family can be created, read, or written. There is no mediation

 based of port number or protocol beyond tcp, udp, and raw. Network netlink(7) rules may

 only specify type 'dgram' and 'raw'.

 AppArmor network rules are accumulated so that the granted network permissions are the

 union of all the listed network rule permissions.

 AppArmor network rules are broad and general and become more restrictive as further

 information is specified.

 eg.

 network, #allow access to all networking

 network tcp, #allow access to tcp

 network inet tcp, #allow access to tcp only for inet4 addresses

 network inet6 tcp, #allow access to tcp only for inet6 addresses

 network netlink raw, #allow access to AF_NETLINK SOCK_RAW

 Mount Rules

 AppArmor supports mount mediation and allows specifying filesystem types and mount flags.

 The syntax of mount rules in AppArmor is based on the mount(8) command syntax. Mount rules

 must contain one of the mount, remount or umount keywords, but all mount conditions are

 optional. Unspecified optional conditionals are assumed to match all entries (eg, not Page 16/35

 specifying fstype means all fstypes are matched). Due to the complexity of the mount

 command and how options may be specified, AppArmor allows specifying conditionals three

 different ways:

 1. If a conditional is specified using '=', then the rule only grants permission for

 mounts matching the exactly specified options. For example, an AppArmor policy with

 the following rule:

 mount options=ro /dev/foo -E<gt> /mnt/,

 Would match:

 $ mount -o ro /dev/foo /mnt

 but not either of these:

 $ mount -o ro,atime /dev/foo /mnt

 $ mount -o rw /dev/foo /mnt

 2. If a conditional is specified using 'in', then the rule grants permission for mounts

 matching any combination of the specified options. For example, if an AppArmor policy

 has the following rule:

 mount options in (ro,atime) /dev/foo -> /mnt/,

 all of these mount commands will match:

 $ mount -o ro /dev/foo /mnt

 $ mount -o ro,atime /dev/foo /mnt

 $ mount -o atime /dev/foo /mnt

 but none of these will:

 $ mount -o ro,sync /dev/foo /mnt

 $ mount -o ro,atime,sync /dev/foo /mnt

 $ mount -o rw /dev/foo /mnt

 $ mount -o rw,noatime /dev/foo /mnt

 $ mount /dev/foo /mnt

 3. If multiple conditionals are specified in a single mount rule, then the rule grants

 permission for each set of options. This provides a shorthand when writing mount rules

 which might help to logically break up a conditional. For example, if an AppArmor

 policy has the following rule:

 mount options=ro options=atime

 both of these mount commands will match:

 $ mount -o ro /dev/foo /mnt Page 17/35

 $ mount -o atime /dev/foo /mnt

 but this one will not:

 $ mount -o ro,atime /dev/foo /mnt

 Note that separate mount rules are distinct and the options do not accumulate. For

 example, these AppArmor mount rules:

 mount options=ro,

 mount options=atime,

 are not equivalent to either of these mount rules:

 mount options=(ro,atime),

 mount options in (ro,atime),

 To help clarify the flexibility and complexity of mount rules, here are some example rules

 with accompanying matching commands:

 mount,

 the 'mount' rule without any conditionals is the most generic and allows any mount.

 Equivalent to 'mount fstype=** options=** ** -> /**'.

 mount /dev/foo,

 allow mounting of /dev/foo anywhere with any options. Some matching mount commands:

 $ mount /dev/foo /mnt

 $ mount -t ext3 /dev/foo /mnt

 $ mount -t vfat /dev/foo /mnt

 $ mount -o ro,atime,noexec,nodiratime /dev/foo /srv/some/mountpoint

 mount options=ro /dev/foo,

 allow mounting of /dev/foo anywhere, as read only. Some matching mount commands:

 $ mount -o ro /dev/foo /mnt

 $ mount -o ro /dev/foo /some/where/else

 mount options=(ro,atime) /dev/foo,

 allow mount of /dev/foo anywhere, as read only and using inode access times. Some

 matching mount commands:

 $ mount -o ro,atime /dev/foo /mnt

 $ mount -o ro,atime /dev/foo /some/where/else

 mount options in (ro,atime) /dev/foo,

 allow mount of /dev/foo anywhere using some combination of 'ro' and 'atime' (see

 above). Some matching mount commands: Page 18/35

 $ mount -o ro /dev/foo /mnt

 $ mount -o atime /dev/foo /some/where/else

 $ mount -o ro,atime /dev/foo /some/other/place

 mount options=ro /dev/foo, mount options=atime /dev/foo,

 allow mount of /dev/foo anywhere as read only, and allow mount of /dev/foo anywhere

 using inode access times. Note this is expressed as two different rules. Matches:

 $ mount -o ro /dev/foo /mnt/1

 $ mount -o atime /dev/foo /mnt/2

 mount -> /mnt/**,

 allow mounting anything under a directory in /mnt/**. Some matching mount commands:

 $ mount /dev/foo1 /mnt/1

 $ mount -o ro,atime,noexec,nodiratime /dev/foo2 /mnt/deep/path/foo2

 mount options=ro -> /mnt/**,

 allow mounting anything under /mnt/**, as read only. Some matching mount commands:

 $ mount -o ro /dev/foo1 /mnt/1

 $ mount -o ro /dev/foo2 /mnt/deep/path/foo2

 mount fstype=ext3 options=(rw,atime) /dev/sdb1 -> /mnt/stick/,

 allow mounting an ext3 filesystem in /dev/sdb1 on /mnt/stick as read/write and using

 inode access times. Matches only:

 $ mount -o rw,atime /dev/sdb1 /mnt/stick

 mount options=(ro, atime) options in (nodev, user) /dev/foo -> /mnt/,

 allow mounting /dev/foo on /mmt/ read only and using inode access times or allow

 mounting /dev/foo on /mnt/ with some combination of 'nodev' and 'user'. Matches only:

 $ mount -o ro,atime /dev/foo /mnt

 $ mount -o nodev /dev/foo /mnt

 $ mount -o user /dev/foo /mnt

 $ mount -o nodev,user /dev/foo /mnt

 Message Queue rules

 AppArmor supports mediation of POSIX and SYSV message queues.

 AppArmor Message Queue permissions are implied when a rule does not explicitly state an

 access list. By default, all Message Queue permissions are implied.

 AppArmor Message Queue permissions become more restricted as further information is

 specified. Policy can be specified by determining its access mode, type, label, and Page 19/35

 message queue name.

 Regarding access modes, 'r' and 'read' are used to read messages from the queue. 'w' and

 'write' are used to write to the message queue. 'create' is used to create the message

 queue, and 'open' is used to get the message queue identifier when the queue is already

 created. 'delete' is used to remove the message queue. The access modes to get and set

 attributes of the message queue are 'setattr' and 'getattr'.

 The type of the policy can be either 'posix' or 'sysv'. This information is relevant when

 the message queue name is not specified, and when specified can be inferred by the queue

 name, since message queues' name for posix must start with '/', and message queues' key

 for SYSV must be a positive integer.

 The policy label is the label assigned to the message queue when it is created.

 The message queue name can be either a string starting with '/' if the type is POSIX, or a

 positive integer if the type is SYSV. If the type is not specified, then it will be

 inferred by the queue name.

 Example AppArmor Message Queue rules:

 # Allow all Message Queue access

 mqueue,

 # Explicitly allow all Message Queue access,

 mqueue (create, open, delete, read, write, getattr, setattr),

 # Explicitly deny use of Message Queue

 deny mqueue,

 # Allow all access for POSIX queue of name /bar

 mqueue type=posix /bar,

 # Allow create permission for a SYSV queue of label foo

 mqueue create label=foo 123,

 Pivot Root Rules

 AppArmor mediates changing of the root filesystem through the pivot_root(2) system call.

 The syntax of 'pivot_root' rules in AppArmor is based on the pivot_root(2) system call

 parameters with the notable exception that the ordering is reversed. The path

 corresponding to the put_old parameter of pivot_root(2) is optionally specified in the

 'pivot_root' rule using the 'oldroot=' prefix.

 AppArmor 'pivot_root' rules can specify a profile transition to occur during the

 pivot_root(2) system call. Note that AppArmor will only transition the process calling Page 20/35

 pivot_root(2) to the new profile.

 The paths specified in 'pivot_root' rules must end with '/' since they are directories.

 Here are some example 'pivot_root' rules:

 # Allow any pivot

 pivot_root,

 # Allow pivoting to any new root directory and putting the old root

 # directory at /mnt/root/old/

 pivot_root oldroot=/mnt/root/old/,

 # Allow pivoting the root directory to /mnt/root/

 pivot_root /mnt/root/,

 # Allow pivoting to /mnt/root/ and putting the old root directory at

 # /mnt/root/old/

 pivot_root oldroot=/mnt/root/old/ /mnt/root/,

 # Allow pivoting to /mnt/root/, putting the old root directory at

 # /mnt/root/old/ and transition to the /mnt/root/sbin/init profile

 pivot_root oldroot=/mnt/root/old/ /mnt/root/ -> /mnt/root/sbin/init,

 PTrace rules

 AppArmor supports mediation of ptrace(2). AppArmor PTrace rules are accumulated so that

 the granted PTrace permissions are the union of all the listed PTrace rule permissions.

 AppArmor PTrace permissions are implied when a rule does not explicitly state an access

 list. By default, all PTrace permissions are implied.

 The trace and tracedby permissions govern ptrace(2) while read and readby govern certain

 proc(5) filesystem accesses, kcmp(2), futexes (get_robust_list(2)) and perf trace events.

 For a ptrace operation to be allowed the profile of the tracing process and the profile of

 the target task must both have the correct permissions. For example, the profile of the

 process attaching to another task must have the trace permission for the target task's

 profile, and the task being traced must have the tracedby permission for the tracing

 process' profile.

 Example AppArmor PTrace rules:

 # Allow all PTrace access

 ptrace,

 # Explicitly allow all PTrace access,

 ptrace (read, readby, trace, tracedby), Page 21/35

 # Explicitly deny use of ptrace(2)

 deny ptrace (trace),

 # Allow unconfined processes (eg, a debugger) to ptrace us

 ptrace (readby, tracedby) peer=unconfined,

 # Allow ptrace of a process running under the /usr/bin/foo profile

 ptrace (trace) peer=/usr/bin/foo,

 Signal rules

 AppArmor supports mediation of signal(7). AppArmor signal rules are accumulated so that

 the granted signal permissions are the union of all the listed signal rule permissions.

 AppArmor signal permissions are implied when a rule does not explicitly state an access

 list. By default, all signal permissions are implied.

 For the sending of a signal to be allowed, the profile of the sending process and the

 profile of the target task must both have the correct permissions. For example, the

 profile of a process sending a signal to another task must have the send permission for

 the target task's profile, and the task receiving the signal must have a receive

 permission for the sending process' profile.

 Example AppArmor signal rules:

 # Allow all signal access

 signal,

 # Explicitly deny sending the HUP and INT signals

 deny signal (send) set=(hup, int),

 # Allow unconfined processes to send us signals

 signal (receive) peer=unconfined,

 # Allow sending of signals to a process running under the /usr/bin/foo

 # profile

 signal (send) peer=/usr/bin/foo,

 # Allow checking for PID existence

 signal (receive, send) set=("exists"),

 # Allow us to signal ourselves using the built-in @{profile_name} variable

 signal peer=@{profile_name},

 # Allow two real-time signals

 signal set=(rtmin+0 rtmin+32),

 DBus rules Page 22/35

 AppArmor supports DBus mediation. The mediation is performed in conjunction with the DBus

 daemon. The DBus daemon verifies that communications over the bus are permitted by

 AppArmor policy.

 AppArmor DBus rules are accumulated so that the granted DBus permissions are the union of

 all the listed DBus rule permissions.

 AppArmor DBus rules are broad and general and become more restrictive as further

 information is specified. Policy may be specified down to the interface member level

 (method or signal name), however the contents of messages are not examined.

 Some AppArmor DBus permissions are not compatible with all AppArmor DBus rules. The

 'bind' permission cannot be used in message rules. The 'send' and 'receive' permissions

 cannot be used in service rules. The 'eavesdrop' permission cannot be used in rules

 containing any conditionals outside of the 'bus' conditional.

 'r' and 'read' are synonyms for 'receive'. 'w' and 'write' are synonyms for 'send'. 'rw'

 is a synonym for both 'send' and 'receive'.

 AppArmor DBus permissions are implied when a rule does not explicitly state an access

 list. By default, all DBus permissions are implied. Only message permissions are implied

 for message rules and only service permissions are implied for service rules.

 Example AppArmor DBus rules:

 # Allow all DBus access

 dbus,

 # Explicitly allow all DBus access,

 dbus (send, receive, bind),

 # Deny send/receive/bind access to the session bus

 deny dbus bus=session,

 # Allow bind access for a particular name on any bus

 dbus bind name=com.example.ExampleName,

 # Allow receive access for a particular path and interface

 dbus receive path=/com/example/path interface=com.example.Interface,

 # Deny send/receive access to the system bus for a particular interface

 deny dbus bus=system interface=com.example.ExampleInterface,

 # Allow send access for a particular path, interface, member, and pair of

 # peer names:

 dbus send Page 23/35

 bus=session

 path=/com/example/path

 interface=com.example.Interface

 member=ExampleMethod

 peer=(name=(com.example.ExampleName1|com.example.ExampleName2)),

 # Allow receive access for all unconfined peers

 dbus receive peer=(label=unconfined),

 # Allow eavesdropping on the system bus

 dbus eavesdrop bus=system,

 # Allow and audit all eavesdropping

 audit dbus eavesdrop,

 Unix socket rules

 AppArmor supports fine grained mediation of unix domain abstract and anonymous sockets.

 Unix domain sockets with file system paths are mediated via file access rules.

 Abstract unix domain sockets is a nonportable Linux extension of unix domain sockets, see

 unix(7) for more information.

 Unix socket address paths

 The sun_path component (aka the socket address) of a unix domain socket is specified by

 the

 addr=

 conditional. If an address conditional is not specified as part of a rule then the rule

 matches both abstract and anonymous sockets.

 In apparmor the address of an abstract unix domain socket begins with the @ character,

 similar to how they are reported (as paths) by netstat -x. The address then follows and

 may contain pattern matching and any characters including the null character. In apparmor

 null characters must be specified by using an escape sequence \000 or \x00. The pattern

 matching is the same as is used by file path matching so * will not match / even though it

 has no special meaning with in an abstract socket name. Eg.

 unix addr=@*,

 Autobound unix domain sockets have a unix sun_path assigned to them by the kernel, as such

 specifying a policy based address is not possible. The autobinding of sockets can be

 controlled by specifying the special auto keyword. Eg.

 unix addr=auto, Page 24/35

 To indicate that the rule only applies to auto binding of unix domain sockets. It is

 important to note this only applies to the bind permission as once the socket is bound to

 an address it is indistinguishable from a socket that have an addr bound with a specified

 name. When the auto keyword is used with other permissions or as part of a peer addr it

 will be replaced with a pattern that can match an autobound socket. Eg. For some kernels

 unix rw addr=auto,

 is transformed to

 unix rw addr=@[a-f0-9][a-f0-9][a-f0-9][a-f0-9][a-f0-9],

 It is important to note, this pattern may match abstract sockets that were not autobound

 but have an addr that fits what is generated by the kernel when autobinding a socket.

 Anonymous unix domain sockets have no sun_path associated with the socket address, however

 it can be specified with the special none keyword to indicate the rule only applies to

 anonymous unix domain sockets. Eg.

 unix addr=none,

 If the address component of a rule is not specified then the rule applies to autobind,

 abstract and anonymous sockets.

 Unix socket permissions

 Unix domain socket rules are accumulated so that the granted unix socket permissions are

 the union of all the listed unix rule permissions.

 Unix domain socket rules are broad and general and become more restrictive as further

 information is specified. Policy may be specified down to the socket address (aka

 sun_path) and label level. The content of the communication is not examined.

 Unix socket rule permissions are implied when a rule does not explicitly state an access

 list. By default if a rule does not have an access list all permissions that are

 compatible with the specified set of local and peer conditionals are implied.

 The create, bind, listen, shutdown, getattr, setattr, getopt, and setopt permissions are

 local socket permissions. They are only applied to the local socket and can't be specified

 in rules that have a peer component. The accept permission applies to the combination of a

 local and peer socket. The connect, send, and receive permissions are peer socket

 permissions.

 Only the peer socket permissions will be applied to rules that don't specify permissions

 and contain a peer component.

 Example Unix domain socket rules: Page 25/35

 # Allow all permissions to unix sockets

 unix,

 # Explicitly allow all unix permissions

 unix (create, listen, accept, connect, send, receive, getattr, setattr, setopt, getopt),

 # Explicitly deny unix socket access

 deny unix,

 # Allow create and use of abstract and anonymous sockets for profile_name

 unix peer=(label=@{profile_name}),

 # Allow receiving via unix sockets from unconfined

 unix (receive) peer=(label=unconfined),

 # Allow getattr and shutdown on anonymous sockets

 unix (getattr, shutdown) addr=none,

 # Allow SOCK_STREAM connect, receive and send on an abstract socket @bar

 # with peer running under profile '/foo'

 unix (connect, receive, send) type=stream peer=(label=/foo,addr="@bar"),

 # Allow accepting connections from and receiving from peer running under

 # profile '/bar' on abstract socket '@foo'

 unix (accept, receive) addr=@foo peer=(label=/bar),

 Abstract unix domain sockets autobind

 Abstract unix domain sockets can autobind to an address. The autobind address is a unique

 5 digit string of decimal numbers, eg. @00001. There is nothing that prevents a task from

 manually binding to addresses with a similar pattern so it is impossible to reliably

 identify autobind addresses from a regular address.

 Interaction of network rules and fine grained unix domain socket rules

 The coarse grained networking rules can be used to control unix domain sockets as well.

 When fine grained unix domain socket mediation is available the coarse grained network

 rule is mapped into the equivalent unix socket rule.

 E.G.

 network unix, => unix,

 network unix stream, => unix stream,

 Fine grained mediation rules however can not be losslessly converted back to the coarse

 grained network rule; e.g.

 unix bind addr=@example, Page 26/35

 Has no exact match under coarse grained network rules, the closest match is the much wider

 permission rule of

 network unix,

 change_profile rules

 AppArmor supports self directed profile transitions via the change_profile api.

 Change_profile rules control which permissions for which profiles a confined task can

 transition to. The profile name can contain apparmor pattern matching to specify

 different profiles.

 change_profile -> **,

 The change_profile api allows the transition to be delayed until when a task executes

 another application. If an exec rule transition is specified for the application and the

 change_profile api is used to make a transition at exec time, the transition specified by

 the change_profile api takes precedence.

 The Change_profile permission can restrict which profiles can be transitioned to based off

 of the executable name by specifying the exec condition.

 change_profile /bin/bash -> new_profile,

 The restricting of the transition profile to a given executable at exec time is only

 useful when then current task is allowed to make dynamic decisions about what confinement

 should be, but the decision set needs to be controlled. A list of profiles or multiple

 rules can be used to specify the profiles in the set. Eg.

 change_profile /bin/bash -> {new_profile1,new_profile2,new_profile3},

 An exec rule can be used to specify a transition for the executable, if the transition

 should be allowed even if the change_profile api has not been used to select a transition

 for those available in the change_profile rule set. Eg.

 /bin/bash Px -> new_profile1,

 change_profile /bin/bash -> {new_profile1,new_profile2,new_profile3},

 The exec mode dictates whether or not the Linux Kernel's unsafe_exec routines should be

 used to scrub the environment, similar to setuid programs. (See ld.so(8) for some

 information on setuid/setgid environment scrubbing.) The safe mode sets up environment

 scrubbing to occur when the new application is executed and unsafe mode disables

 AppArmor's requirement for environment scrubbing (the kernel and/or libc may still require

 environment scrubbing). An exec mode can only be specified when an exec condition is

 present. Page 27/35

 change_profile safe /bin/bash -> new_profile,

 Not all kernels support safe mode and the parser will downgrade rules to unsafe mode in

 that situation. If no exec mode is specified, the default is safe mode in kernels that

 support it.

 rlimit rules

 AppArmor can set and control the resource limits associated with a profile as described in

 the setrlimit(2) man page.

 The AppArmor rlimit controls allow setting of limits and restricting changes of them and

 these actions can be audited. Enforcement of the set limits is handled by the standard

 kernel enforcement mechanism for rlimits and will not result in an audited apparmor

 message if the limit is enforced.

 If a profile does not have an rlimit rule associated with a given rlimit then the rlimit

 is left alone and regular access, including changing the limit, is allowed. However if the

 profile sets an rlimit then the current limit is checked and if greater than the limit

 specified in the rule it will be changed to the specified limit.

 AppArmor rlimit rules control the hard limit of an application and ensure that if the hard

 limit is lowered that the soft limit does not exceed the hard limit value.

 Eg.

 set rlimit data <= 100M,

 set rlimit nproc <= 10,

 set rlimit nice <= 5,

 Variables

 AppArmor's policy language allows embedding variables into file rules to enable easier

 configuration for some common (and pervasive) setups. Variables may have multiple values

 assigned, but any variable assignments must be made before the start of the profile.

 The parser will automatically expand variables to include all values that they have been

 assigned; it is an error to reference a variable without setting at least one value. You

 can use empty quotes ("") to explicitly add an empty value.

 At the time of this writing, the following variables are defined in the provided AppArmor

 policy:

 @{HOME}

 @{HOMEDIRS}

 @{multiarch} Page 28/35

 @{pid}

 @{pids}

 @{PROC}

 @{securityfs}

 @{apparmorfs}

 @{sys}

 @{tid}

 @{run}

 @{XDG_DESKTOP_DIR}

 @{XDG_DOWNLOAD_DIR}

 @{XDG_TEMPLATES_DIR}

 @{XDG_PUBLICSHARE_DIR}

 @{XDG_DOCUMENTS_DIR}

 @{XDG_MUSIC_DIR}

 @{XDG_PICTURES_DIR}

 @{XDG_VIDEOS_DIR}

 These are defined in files in /etc/apparmor.d/tunables and are used in many of the

 abstractions described later.

 You may also add files in /etc/apparmor.d/tunables/home.d for site-specific customization

 of @{HOMEDIRS}, /etc/apparmor.d/tunables/multiarch.d for @{multiarch} and

 /etc/apparmor.d/tunables/xdg-user-dirs.d for @{XDG_*}.

 The special @{profile_name} variable is set to the profile name and may be used in all

 policy.

 Alias rules

 AppArmor also provides alias rules for remapping paths for site-specific layouts. They are

 an alternative form of path rewriting to using variables, and are done after variable

 resolution. Alias rules must occur within the preamble of the profile. System-wide aliases

 are found in /etc/apparmor.d/tunables/alias, which is included by

 /etc/apparmor.d/tunables/global. /etc/apparmor.d/tunables/global is typically included at

 the beginning of an AppArmor profile.

 Globbing

 File resources may be specified with a globbing syntax similar to that used by popular

 shells, such as csh(1), bash(1), zsh(1). Page 29/35

 * can substitute for any number of characters, excepting '/'

 ** can substitute for any number of characters, including '/'

 ? can substitute for any single character excepting '/'

 [abc]

 will substitute for the single character a, b, or c

 [a-c]

 will substitute for the single character a, b, or c

 [^a-c]

 will substitute for any single character not matching a, b or c

 {ab,cd}

 will expand to one rule to match ab, one rule to match cd

 When AppArmor looks up a directory the pathname being looked up will end with a slash

 (e.g., /var/tmp/); otherwise it will not end with a slash. Only rules that match a

 trailing slash will match directories. Some examples, none matching the /tmp/ directory

 itself, are:

 /tmp/*

 Files directly in /tmp.

 /tmp/*/

 Directories directly in /tmp.

 /tmp/**

 Files and directories anywhere underneath /tmp.

 /tmp/**/

 Directories anywhere underneath /tmp.

 Rule Qualifiers

 There are several rule qualifiers that can be applied to permission rules. Rule

 qualifiers can modify the rule and/or permissions within the rule.

 allow

 Specifies that permissions requests that match the rule are allowed. This is the

 default value for rules and does not need to be specified. Conflicts with the deny

 qualifier.

 audit

 Specifies that permissions requests that match the rule should be recorded to the

 audit log. Page 30/35

 deny

 Specifies that permissions requests that match the rule should be denied without

 logging. Can be combined with 'audit' to enable logging. Conflicts with the allow

 qualifier.

 owner

 Specifies that the task must have the same euid/fsuid as the object being referenced

 by the permission check.

 Qualifier Blocks

 Rule Qualifiers can be applied to multiple rules at a time by grouping the rules into a

 rule block.

 audit {

 /foo r,

 network,

 }

 #include mechanism

 AppArmor provides an easy abstraction mechanism to group common access requirements; this

 abstraction is an extremely flexible way to grant site-specific rights and makes writing

 new AppArmor profiles very simple by assembling the needed building blocks for any given

 program.

 The use of '#include' is modelled directly after cpp(1); its use will replace the

 '#include' statement with the specified file's contents. The leading '#' is optional, and

 the '#include' keyword can be followed by an option conditional 'if exists' that specifies

 profile compilation should continue if the specified file or directory is not found.

 #include "/absolute/path" specifies that /absolute/path should be used. #include

 "relative/path" specifies that relative/path should be used, where the path is relative to

 the current working directory. #include <magic/path> is the most common usage; it will

 load magic/path relative to a directory specified to apparmor_parser(8). /etc/apparmor.d/

 is the AppArmor default.

 The supplied AppArmor profiles follow several conventions; the abstractions stored in

 /etc/apparmor.d/abstractions/ are some large clusters that are used in most profiles. What

 follows are short descriptions of how some of the abstractions are used.

 abstractions/audio

 Includes accesses to device files used for audio applications. Page 31/35

 abstractions/authentication

 Includes access to files and services typically necessary for services that perform

 user authentication.

 abstractions/base

 Includes files that should be readable and writable in all profiles.

 abstractions/bash

 Includes many files used by bash; useful for interactive shells and programs that call

 system(3).

 abstractions/consoles

 Includes read and write access to the device files controlling the virtual console,

 sshd(8), xterm(1), etc. This abstraction is needed for many programs that interact

 with users.

 abstractions/fonts

 Includes access to fonts and the font libraries.

 abstractions/gnome

 Includes read and write access to GNOME configuration files, as well as read access to

 GNOME libraries.

 abstractions/kde

 Includes read and write access to KDE configuration files, as well as read access to

 KDE libraries.

 abstractions/kerberosclient

 Includes file access rules needed for common kerberos clients.

 abstractions/nameservice

 Includes file rules to allow DNS, LDAP, NIS, SMB, user and group password databases,

 services, and protocols lookups.

 abstractions/perl

 Includes read access to perl modules.

 abstractions/user-download

 abstractions/user-mail

 abstractions/user-manpages

 abstractions/user-tmp

 abstractions/user-write

 Some profiles for typical "user" programs will use these include files to describe Page 32/35

 rights that users have in the system.

 abstractions/wutmp

 Includes write access to files used to maintain wtmp(5) and utmp(5) databases, used

 with the w(1) and associated commands.

 abstractions/X

 Includes read access to libraries, configuration files, X authentication files, and

 the X socket.

 Some of the abstractions rely on variables that are set in files in the

 /etc/apparmor.d/tunables/ directory. These variables are currently @{HOME} and

 @{HOMEDIRS}. Variables cannot be set in profile scope; they can only be set before the

 profile. Therefore, any profiles that use abstractions should either #include

 <tunables/global> or otherwise ensure that @{HOME} and @{HOMEDIRS} are set before starting

 the profile definition. The aa-autodep(8) and aa-genprof(8) utilities will automatically

 emit #include <tunables/global> in generated profiles.

 Feature ABI

 The feature abi tells AppArmor which feature set the policy was developed under. This is

 important to ensure that kernels with a different feature set don't enforce features that

 the policy doesn't support, which can result in unexpected application failures.

 When policy is compiled both the kernel feature abi and policy feature abi are consulted

 to build a policy that will work for the system's kernel.

 If the kernel supports a feature not supported by the policy then policy will be built so

 that the kernel does NOT enforce that feature.

 If the policy supports a feature not supported by the kernel the compile may downgrade the

 rule with the feature to something the kernel supports, drop the rule completely, or fail

 the compile.

 If the policy abi is specified as kernel then the running kernel's abi will be used. This

 should never be used in shipped policy as it can cause system breakage when a new kernel

 is installed.

 ABI compatibility with AppArmor 2.x

 AppArmor 3 remains compatible with AppArmor 2.x by detecting when a profile does not have

 a feature ABI specified. In this case the policy compile will either apply the pinned

 feature ABI as specified by the config file or the command line, or if neither of those

 are applied by using a default feature ABI. Page 33/35

 It is important to note that the default feature ABI does not support new features added

 in AppArmor 3 or later.

EXAMPLE

 An example AppArmor profile:

 # which feature abi the policy was developed with

 abi <abi/3.0>,

 # a variable definition in the preamble

 @{HOME} = /home/*/ /root/

 # a comment about foo.

 /usr/bin/foo {

 /bin/mount ux,

 /dev/{,u}random r,

 /etc/ld.so.cache r,

 /etc/foo.conf r,

 /etc/foo/* r,

 /lib/ld-*.so* rmix,

 /lib/lib*.so* r,

 /proc/[0-9]** r,

 /usr/lib/** r,

 /tmp/foo.pid wr,

 /tmp/foo.* lrw,

 /@{HOME}/.foo_file rw,

 /usr/bin/baz Cx -> baz,

 # a comment about foo's hat (subprofile), bar.

 ^bar {

 /lib/ld-*.so* rmix,

 /usr/bin/bar rmix,

 /var/spool/* rwl,

 }

 # a comment about foo's subprofile, baz.

 profile baz {

 #include <abstractions/bash>

 owner /proc/[0-9]*/stat r, Page 34/35

 /bin/bash ixr,

 /var/lib/baz/ r,

 owner /var/lib/baz/* rw,

 }

 }

FILES

 /etc/init.d/boot.apparmor

 /etc/apparmor.d/

KNOWN BUGS

 ? Mount options support the use of pattern matching but mount flags are not correctly

 intersected against specified patterns. Eg, 'mount options=**,' should be equivalent

 to 'mount,', but it is not. (LP: #965690)

 ? The fstype may not be matched against when certain mount command flags are used.

 Specifically fstype matching currently only works when creating a new mount and not

 remount, bind, etc.

 ? Mount rules with multiple 'options' conditionals are not applied as documented but

 instead merged such that 'options in (ro,nodev) options in (atime)' is equivalent to

 'options in (ro,nodev,atime)'.

 ? When specifying mount options with the 'in' conditional, both the positive and

 negative values match when specifying one or the other. Eg, 'rw' matches when 'ro' is

 specified and 'dev' matches when 'nodev' is specified such that 'options in

 (ro,nodev)' is equivalent to 'options in (rw,dev)'.

SEE ALSO

 apparmor(7), apparmor_parser(8), apparmor_xattrs(7), aa-complain(1), aa-enforce(1),

 aa_change_hat(2), mod_apparmor(5), and <https://wiki.apparmor.net>.

AppArmor 3.0.4 2023-06-05 APPARMOR.D(5)

Page 35/35

