
Rocky Enterprise Linux 9.2 Manual Pages on command 'asctime.3'

$ man asctime.3

CTIME(3) Linux Programmer's Manual CTIME(3)

NAME

 asctime, ctime, gmtime, localtime, mktime, asctime_r, ctime_r, gmtime_r, localtime_r -

 transform date and time to broken-down time or ASCII

SYNOPSIS

 #include <time.h>

 char *asctime(const struct tm *tm);

 char *asctime_r(const struct tm *tm, char *buf);

 char *ctime(const time_t *timep);

 char *ctime_r(const time_t *timep, char *buf);

 struct tm *gmtime(const time_t *timep);

 struct tm *gmtime_r(const time_t *timep, struct tm *result);

 struct tm *localtime(const time_t *timep);

 struct tm *localtime_r(const time_t *timep, struct tm *result);

 time_t mktime(struct tm *tm);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 asctime_r(), ctime_r(), gmtime_r(), localtime_r():

 _POSIX_C_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 The ctime(), gmtime(), and localtime() functions all take an argument of data type time_t,

 which represents calendar time. When interpreted as an absolute time value, it represents

 the number of seconds elapsed since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). Page 1/6

 The asctime() and mktime() functions both take an argument representing broken-down time,

 which is a representation separated into year, month, day, and so on.

 Broken-down time is stored in the structure tm, which is defined in <time.h> as follows:

 struct tm {

 int tm_sec; /* Seconds (0-60) */

 int tm_min; /* Minutes (0-59) */

 int tm_hour; /* Hours (0-23) */

 int tm_mday; /* Day of the month (1-31) */

 int tm_mon; /* Month (0-11) */

 int tm_year; /* Year - 1900 */

 int tm_wday; /* Day of the week (0-6, Sunday = 0) */

 int tm_yday; /* Day in the year (0-365, 1 Jan = 0) */

 int tm_isdst; /* Daylight saving time */

 };

 The members of the tm structure are:

 tm_sec The number of seconds after the minute, normally in the range 0 to 59, but can

 be up to 60 to allow for leap seconds.

 tm_min The number of minutes after the hour, in the range 0 to 59.

 tm_hour The number of hours past midnight, in the range 0 to 23.

 tm_mday The day of the month, in the range 1 to 31.

 tm_mon The number of months since January, in the range 0 to 11.

 tm_year The number of years since 1900.

 tm_wday The number of days since Sunday, in the range 0 to 6.

 tm_yday The number of days since January 1, in the range 0 to 365.

 tm_isdst A flag that indicates whether daylight saving time is in effect at the time de?

 scribed. The value is positive if daylight saving time is in effect, zero if it

 is not, and negative if the information is not available.

 The call ctime(t) is equivalent to asctime(localtime(t)). It converts the calendar time t

 into a null-terminated string of the form

 "Wed Jun 30 21:49:08 1993\n"

 The abbreviations for the days of the week are "Sun", "Mon", "Tue", "Wed", "Thu", "Fri",

 and "Sat". The abbreviations for the months are "Jan", "Feb", "Mar", "Apr", "May", "Jun",

 "Jul", "Aug", "Sep", "Oct", "Nov", and "Dec". The return value points to a statically al? Page 2/6

 located string which might be overwritten by subsequent calls to any of the date and time

 functions. The function also sets the external variables tzname, timezone, and daylight

 (see tzset(3)) with information about the current timezone. The reentrant version

 ctime_r() does the same, but stores the string in a user-supplied buffer which should have

 room for at least 26 bytes. It need not set tzname, timezone, and daylight.

 The gmtime() function converts the calendar time timep to broken-down time representation,

 expressed in Coordinated Universal Time (UTC). It may return NULL when the year does not

 fit into an integer. The return value points to a statically allocated struct which might

 be overwritten by subsequent calls to any of the date and time functions. The gmtime_r()

 function does the same, but stores the data in a user-supplied struct.

 The localtime() function converts the calendar time timep to broken-down time representa?

 tion, expressed relative to the user's specified timezone. The function acts as if it

 called tzset(3) and sets the external variables tzname with information about the current

 timezone, timezone with the difference between Coordinated Universal Time (UTC) and local

 standard time in seconds, and daylight to a nonzero value if daylight savings time rules

 apply during some part of the year. The return value points to a statically allocated

 struct which might be overwritten by subsequent calls to any of the date and time func?

 tions. The localtime_r() function does the same, but stores the data in a user-supplied

 struct. It need not set tzname, timezone, and daylight.

 The asctime() function converts the broken-down time value tm into a null-terminated

 string with the same format as ctime(). The return value points to a statically allocated

 string which might be overwritten by subsequent calls to any of the date and time func?

 tions. The asctime_r() function does the same, but stores the string in a user-supplied

 buffer which should have room for at least 26 bytes.

 The mktime() function converts a broken-down time structure, expressed as local time, to

 calendar time representation. The function ignores the values supplied by the caller in

 the tm_wday and tm_yday fields. The value specified in the tm_isdst field informs mk?

 time() whether or not daylight saving time (DST) is in effect for the time supplied in the

 tm structure: a positive value means DST is in effect; zero means that DST is not in ef?

 fect; and a negative value means that mktime() should (use timezone information and system

 databases to) attempt to determine whether DST is in effect at the specified time.

 The mktime() function modifies the fields of the tm structure as follows: tm_wday and

 tm_yday are set to values determined from the contents of the other fields; if structure Page 3/6

 members are outside their valid interval, they will be normalized (so that, for example,

 40 October is changed into 9 November); tm_isdst is set (regardless of its initial value)

 to a positive value or to 0, respectively, to indicate whether DST is or is not in effect

 at the specified time. Calling mktime() also sets the external variable tzname with in?

 formation about the current timezone.

 If the specified broken-down time cannot be represented as calendar time (seconds since

 the Epoch), mktime() returns (time_t) -1 and does not alter the members of the broken-down

 time structure.

RETURN VALUE

 On success, gmtime() and localtime() return a pointer to a struct tm.

 On success, gmtime_r() and localtime_r() return the address of the structure pointed to by

 result.

 On success, asctime() and ctime() return a pointer to a string.

 On success, asctime_r() and ctime_r() return a pointer to the string pointed to by buf.

 On success, mktime() returns the calendar time (seconds since the Epoch), expressed as a

 value of type time_t.

 On error, mktime() returns the value (time_t) -1. The remaining functions return NULL on

 error. On error, errno is set to indicate the cause of the error.

ERRORS

 EOVERFLOW

 The result cannot be represented.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?asctime() ? Thread safety ? MT-Unsafe race:asctime locale ?

 ???

 ?asctime_r() ? Thread safety ? MT-Safe locale ?

 ???

 ?ctime() ? Thread safety ? MT-Unsafe race:tmbuf ?

 ? ? ? race:asctime env locale ?

 ??? Page 4/6

 ?ctime_r(), gm? ? Thread safety ? MT-Safe env locale ?

 ?time_r(), lo? ? ? ?

 ?caltime_r(), ? ? ?

 ?mktime() ? ? ?

 ???

 ?gmtime(), lo? ? Thread safety ? MT-Unsafe race:tmbuf env locale ?

 ?caltime() ? ? ?

 ???

CONFORMING TO

 POSIX.1-2001. C89 and C99 specify asctime(), ctime(), gmtime(), localtime(), and mk?

 time(). POSIX.1-2008 marks asctime(), asctime_r(), ctime(), and ctime_r() as obsolete,

 recommending the use of strftime(3) instead.

NOTES

 The four functions asctime(), ctime(), gmtime(), and localtime() return a pointer to

 static data and hence are not thread-safe. The thread-safe versions, asctime_r(),

 ctime_r(), gmtime_r(), and localtime_r(), are specified by SUSv2.

 POSIX.1-2001 says: "The asctime(), ctime(), gmtime(), and localtime() functions shall re?

 turn values in one of two static objects: a broken-down time structure and an array of

 type char. Execution of any of the functions may overwrite the information returned in

 either of these objects by any of the other functions." This can occur in the glibc im?

 plementation.

 In many implementations, including glibc, a 0 in tm_mday is interpreted as meaning the

 last day of the preceding month.

 The glibc version of struct tm has additional fields

 const char *tm_zone; /* Timezone abbreviation */

 defined when _BSD_SOURCE was set before including <time.h>. This is a BSD extension,

 present in 4.3BSD-Reno.

 According to POSIX.1-2001, localtime() is required to behave as though tzset(3) was

 called, while localtime_r() does not have this requirement. For portable code, tzset(3)

 should be called before localtime_r().

SEE ALSO

 date(1), gettimeofday(2), time(2), utime(2), clock(3), difftime(3), strftime(3), strp?

 time(3), timegm(3), tzset(3), time(7) Page 5/6

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

 2020-12-21 CTIME(3)

Page 6/6

