
Rocky Enterprise Linux 9.2 Manual Pages on command 'axfer-transfer.1'

$ man axfer-transfer.1

AXFER-TRANSFER(1) General Commands Manual AXFER-TRANSFER(1)

NAME

 axfer-transfer - transferrer of audio data frame for sound devices and nodes.

SYNOPSIS

 axfer transfer direction [common-options] [backend-options] [filepath]

 axfer transfer direction [common-options] [backend-options] -I | --separate-channels

 filepath ...

 direction = capture | playback

 common-options = (read OPTIONS section)

 backend-options = (read OPTIONS section)

 filepaths = (read OPTIONS section)

DESCRIPTION

 The transfer subcommand of axfer performs transmission of audio data frames for devices

 available in supported backends. This program is essentially designed to use alsa-lib APIs

 (libasound backend) to handle sound devices supported by Linux sound subsystem (ALSA).

OPTIONS

 Direction

 capture

 Operates for capture transmission.

 playback

 Operates for playback transmission.

 Filepath

 Filepath is handled as a path relative to current working directory of run time if it's Page 1/15

 not full path from root directory.

 The standard input or output is used if filepath is not specified or given as '-' .

 For playback transmission, container format of given filepath is detected automatically

 and metadata is used for parameters of sample format, channels, rate, duration. If nothing

 detected, content of given file path is handled as raw data. In this case, the parameters

 should be indicated as options.

 Multiple filepaths are allowed with -I | --separate-channels option. In this case, stan?

 dard input and output is not available. The same filepath is not allowed except for paths

 listed below:

 - /dev/null

 - /dev/zero

 - /dev/full

 - /dev/random

 - /dev/urandom

 Common options

 -h, --help

 Print help messages and finish run time.

 -q, --quiet

 Quiet mode. Suppress messages (not sound :))

 -v, --verbose

 Verbose mode. Runtime dumps supplemental information according to the number of

 this option given in command line.

 -d, --duration=#

 Interrupt after # seconds. A value of zero means infinity. The default is zero, so

 if this option is omitted then the transmission process will run until it is

 killed. Either -d or -s option is available exclusively.

 -s, --samples=#

 Interrupt after transmission of # number of data frames. A value of zero means in?

 finity. The default is zero, so if this options is omitted then the transmission

 process will run until it is killed. Either -d or -s option is available exclu?

 sively.

 -f, --format=FORMAT

 Indicate format of audio sample. This is required for capture transmission, or Page 2/15

 playback transmission with files including raw audio data.

 Available sample format is listed below:

 - [S8|U8|S16|U16|S32|U32][_LE|_BE]

 - [S24|U24][_LE|_BE]

 - FLOAT[_LE|_BE]

 - FLOAT64[_LE|_BE]

 - IEC958_SUBFRAME[_LE|_BE]

 - MU_LAW

 - A_LAW

 - [S20|U20][_LE|_BE]

 - [S24|U24][_3LE|_3BE]

 - [S20|U20][_3LE|_3BE]

 - [S18|U18][_3LE|_3BE]

 - DSD_U8

 - DSD_[U16|U32][_LE|_BE]

 If endian-ness is omitted, host endian-ness is used.

 Some special formats are available:

 - cd (16 bit little endian, 44100, stereo) [= -f S16_LE -c 2 -r 44100]

 - cdr (16 bit big endian, 44100, stereo) [= -f S16_BE -c 2 -f 44100]

 - dat (16 bit little endian, 48000, stereo) [= -f S16_LE -c 2 -r 48000]

 If omitted, U8 is used as a default. Actual available formats are restricted by

 each transmission backend.

 Unavailable sample format is listed below. These format has size of data frame un?

 aligned to byte unit.

 - IMA_ADPCM

 - MPEG

 - GSM

 - SPECIAL

 - G723_24

 - G723_24_1B

 - G723_40

 - G723_40_1B

 -c, --channels=# Page 3/15

 Indicate the number of audio data samples per frame. This is required for capture

 transmission, or playback transmission with files including raw audio data. The

 value should be between 1 to 256 . If omitted, 1 is used as a default.

 -r, --rate=#

 Indicate the number of audio data frame per second. This is required for capture

 transmission, or playback transmission with files including raw audio data. If the

 value is less than 1000 , it's interpreted by kHz unit. The value should be between

 2000 and 192000 . If omitted, 8000 is used as a default.

 -t, --file-type=TYPE

 Indicate the type of file. This is required for capture transmission. Available

 types are listed below:

 - wav: Microsoft/IBM RIFF/Wave format

 - au, sparc: Sparc AU format

 - voc: Creative Tech. voice format

 - raw: raw data

 When nothing is indicated, for capture transmission, the type is decided according

 to suffix of filepath , and raw type is used for fallback.

 -I, --separate-channels

 Indicate this option when several files are going to be handled. For capture trans?

 mission, if one filepath is given as filepath , a list of filepaths is generated in

 a formula '<filepath>-<sequential number>[.suffix]'. The suffix is omitted when

 raw format of container is used.

 --dump-hw-params

 Dump hardware parameters and finish run time if backend supports it.

 --xfer-backend=BACKEND

 Select backend of transmission from a list below. The default is libasound.

 - libasound

 - libffado (optional if compiled)

 Backend options for libasound

 -D, --device=NODE

 This option is used to select PCM node in libasound configuration space. Available

 nodes are listed by pcm operation of list subcommand.

 -N, --nonblock Page 4/15

 With this option, PCM substream is opened in non-blocking mode. When audio data

 frame is not available in buffer of the PCM substream, I/O operation immediately

 returns without blocking process. This option implicitly uses --waiter-type option

 as well to prevent heavy consumption of CPU time.

 -M, --mmap

 With this option, audio data frame is processed directly in buffer of PCM substream

 if selected node supports this operation. Without the option, temporary buffers are

 used to copy audio data frame for buffer of PCM substream. This option implicitly

 uses --waiter-type option as well to prevent heavy consumption of CPU time.

 -F, --period-size=#

 This option configures given value to period_size hardware parameter of PCM sub?

 stream. The parameter indicates the number of audio data frame per period in buffer

 of the PCM substream. Actual number is decided as a result of interaction between

 each implementation of PCM plugin chained from the selected PCM node, and in-kernel

 driver or PCM I/O plugins.

 Ideally, the same amount of audio data frame as the value should be handled in one

 I/O operation. Actually, it is not, depending on implementation of the PCM plugins,

 in-kernel driver, PCM I/O plugins and scheduling model. For 'hw' PCM plugin in

 'irq' scheduling model, the value is used to decide intervals of hardware inter?

 rupt, thus the same amount of audio data frame as the value is expected to be

 available for one I/O operation.

 --period-time=#

 This option configures given value to period_time hardware parameter of PCM sub?

 stream. This option is similar to --period-size option, however its unit is mi?

 cro-second.

 -B, --buffer-size=#

 This option configures given value to buffer_size hardware parameter of PCM sub?

 stream. The parameter indicates the number of audio data frame in buffer of PCM

 substream. Actual number is decided as a result of interaction between each imple?

 mentation of PCM plugin chained from the selected PCM node, and in-kernel driver or

 PCM I/O plugins.

 Ideally, this is multiples of the number of audio data frame per period, thus the

 size of period. Actually, it is not, depending on implementation of the PCM plug? Page 5/15

 ins, in-kernel driver and PCM I/O plugins.

 --buffer-time=#

 This option configures given value to buffer_time hardware parameter of PCM sub?

 stream. This option is similar to --buffer-size option, however its unit is mi?

 cro-second.

 --waiter-type=TYPE

 This option indicates the type of waiter for event notification. At present, four

 types are available; default , select , poll and epoll . With default type,

 'snd_pcm_wait()' is used. With select type, 'select(2)' system call is used. With

 poll type, 'poll(2)' system call is used. With epoll type, Linux-specific

 'epoll(7)' system call is used.

 This option should correspond to one of --nonblock or --mmap options, or timer

 value of --sched-model option. Neither this option nor --test-nowait is available

 at the same time.

 --sched-model=MODEL

 This option selects scheduling model for process of this program. One of irq or

 timer is available. In detail, please read 'SCHEDULING MODEL' section.

 When nothing specified, irq model is used.

 -A, --avail-min=#

 This option configures given value to avail-min software parameter of PCM sub?

 stream. In blocking mode, the value is used as threshold of the number of available

 audio data frames in buffer of PCM substream to wake up process blocked by I/O op?

 eration. In non-blocking mode, any I/O operation returns -EAGAIN until the avail?

 able number of audio data frame reaches the threshold.

 This option has an effect in cases neither --mmap nor timer value of --sched-model

 option is used.

 -R, --start-delay=#

 This option configures given value to start_threshold software parameter of PCM

 substream. The value is used as threshold to start PCM substream automatically. At

 present, this option has an effect in cases neither --mmap nor timer value of

 --sched-model option is used.

 For playback transmission, when the number of accumulated audio data frame in buf?

 fer of PCM substream to which this program writes out reaches the threshold, the Page 6/15

 PCM substream starts automatically without an explicit call of snd_pcm_start() to

 the PCM substream.

 For capture transmission, this option is useless. The number of accumulated audio

 data frame is not increased without an explicit call of snd_pcm_start() to the PCM

 substream.

 This option has an effect in cases neither --mmap nor timer value of --sched-model

 option is used.

 -T, --stop-delay=#

 This option configures given value to stop_threshold software parameter of PCM sub?

 stream. The value is used as threshold to stop PCM substream automatically. At

 present, this option has an effect in cases neither --mmap nor timer value of

 --sched-model option is used.

 For capture transmission, when the number of accumulated audio data frame in buffer

 of PCM substream to which a driver or alsa-lib PCM plugins write reaches the

 threshold, the PCM substream stops automatically without an explicit call of

 snd_pcm_stop() to the PCM substream. This is a case that this program leaves the

 audio data frames without reading for a while.

 For playback transmission, when the number available audio data frame in buffer of

 PCM substream from which a driver or alsa-lib PCM plugins read reaches the thresh?

 old, the PCM substream stops automatically without an explicit call of

 snd_pcm_stop() to the PCM substream. This is a case that this program leaves the

 audio data frames without writing for a while.

 This option has an effect in cases neither --mmap nor timer value of --sched-model

 option is used.

 --disable-resample

 This option has an effect for 'plug' plugin in alsa-lib to suppress conversion of

 sampling rate for audio data frame.

 --disable-channels

 This option has an effect for 'plug' plugin in alsa-lib to suppress conversion of

 channels for audio data frame.

 --disable-format

 This option has an effect for 'plug' plugin in alsa-lib to suppress conversion of

 sample format for audio data frame. Page 7/15

 --disable-softvol

 This option has an effect for 'softvol' plugin in alsa-lib to suppress conversion

 of samples for audio data frame via additional control element.

 --fatal-errors

 This option suppresses recovery operation from XRUN state of running PCM substream,

 then process of this program is going to finish as usual.

 --test-nowait

 This option disables any waiter for I/O event notification. I/O operations are it?

 erated till any of audio data frame is available. The option brings heavy load in

 consumption of CPU time.

 Backend options for libffado

 This backend is automatically available when configure script detects ffado_stream?

 ing_init() symbol in libffado shared object.

 -p, --port=#

 This option uses given value to decide which 1394 OHCI controller is used to commu?

 nicate. When Linux system has two 1394 OHCI controllers, 0 or 1 are available. Nei?

 ther this option nor -g is available at the same time. If nothing specified, libf?

 fado performs to communicate to units on IEEE 1394 bus managed by all of 1394 OHCI

 controller available in Linux system.

 -n, --node=#

 This option uses given value to decide which unit is used to communicate. This op?

 tion requires -p option to indicate which 1394 OHCI controller is used to communi?

 cate to the specified unit.

 -g, --guid=HEXADECIMAL

 This option uses given value to decide a target unit to communicate. The value

 should be prefixed with '0x' and consists of hexadecimal literal letters (0-9, a-f,

 A-F). Neither this option nor -p is available at the same time. If nothing speci?

 fied, libffado performs to communicate to units on IEEE 1394 bus managed by all of

 1394 OHCI controller available in Linux system.

 --frames-per-period=#

 This option uses given value to decide the number of audio data frame in one

 read/write operation. The operation is blocked till the number of available audio

 data frame exceeds the given value. As a default, 512 audio data frames is used. Page 8/15

 --periods-per-buffer=#

 This option uses given value to decide the size of intermediate buffer between this

 program and libffado. As a default, 2 periods per buffer is used.

 --slave

 This option allows this program to run slave mode. In this mode, libffado adds unit

 directory into configuration ROM of 1394 OHCI controller where Linux system runs.

 The unit directory can be found by the other node on the same bus. Linux system

 running on the node can transfer isochronous packet with audio data frame to the

 unit. This program can receive the packet and demultiplex the audio data frame.

 --snoop

 This option allows this program to run snoop mode. In this mode, libffado listens

 isochronous channels to which device transfers isochronous packet. When isochronous

 communication starts by any unit on the same bus, the packets can be handled by

 this program.

 --sched-priority=#

 This option executes pthread_setschedparam() in a call of ffado_streaming_init() to

 configure scheduling policy and given value as its priority for threads related to

 isochronous communication. The given value should be within RLIMIT_RTPRIO parame?

 ter of process. Please read getrlimit(2) for details.

POSIX SIGNALS

 During transmission, SIGINT and SIGTERM will close handled files and PCM substream to be

 going to finish run time.

 SIGTSTP will suspend PCM substream and SIGCONT will resume it. No XRUNs are expected. With

 libffado backend, the suspend/resume is not supported and runtime is aboeted immediately.

 The other signals perform default behaviours.

EXAMPLES

 $ axfer transfer playback -d 1 something

 The above will transfer audio data frame in 'something' file for playback during 1 second.

 The sample format is detected automatically as a result to parse 'something' as long as

 it's compliant to one of Microsoft/IBM RIFF/Wave, Sparc AU, Creative Tech. voice formats.

 If nothing detected, -r , -c and -f should be given, or -f should be given with special

 format.

 $ axfer transfer playback -r 22050 -c 1 -f S16_LE -t raw something Page 9/15

 The above will transfer audio data frame in 'something' file including no information of

 sample format, as sample format of 22050 Hz, monaural, signed 16 bit little endian PCM for

 playback. The transmission continues till catching SIGINT from keyboard or SIGTERM by

 kill(1) .

 $ axfer transfer capture -d 10 -f cd something.wav

 The above will transfer audio data frame to 'something.wav' file as sample format of 44.1

 kHz, 2 channels, signed 16 bit little endian PCM, during 10 seconds. The file format is

 Microsoft/IBM RIFF/Wave according to suffix of the given filepath .

 $ axfer transfer capture -s 1024 -r 48000 -c 2 -f S32_BE -I -t au channels

 The above will transfer audio data frame as sample format of 48.0 kHz, 2 channels, signed

 32 bit big endian PCM for 1,024 number of data frames to files named 'channels-1.au' and

 'channels-2.au'.

SCHEDULING MODEL

 In a design of ALSA PCM core, runtime of PCM substream supports two modes; period-wakeup

 and no-period-wakeup. These two modes are for different scheduling models.

 IRQ-based scheduling model

 As a default, period-wakeup mode is used. In this mode, in-kernel drivers should operate

 hardware to generate periodical notification for transmission of audio data frame. The in?

 terval of notification is equivalent to the same amount of audio data frame as one period

 of buffer, against actual time.

 In a handler assigned to the notification, a helper function of ALSA PCM core is called to

 update a position to head of hardware transmission, then compare it with a position to

 head of application operation to judge overrun/underrun (XRUN) and to wake up blocked pro?

 cesses.

 For this purpose, hardware IRQ of controller for serial audio bus such as Inter-IC sound

 is typically used. In this case, the controller generates the IRQ according to transmis?

 sion on the serial audio bus. In the handler assigned to the IRQ, direct media access

 (DMA) transmission is requested between dedicated host memory and device memory.

 If target hardware doesn't support this kind of mechanism, the periodical notification

 should be emulated by any timer; e.g. hrtimer, kernel timer. External PCM plugins gener?

 ated by PCM plugin SDK in alsa-lib should also emulate the above behaviour.

 In this mode, PCM applications are programmed according to typical way of I/O operations.

 They execute blocking system calls to read/write audio data frame in buffer of PCM sub? Page 10/15

 stream, or blocking system calls to wait until any audio data frame is available. In axfer

 , this is called IRQ-based scheduling model and a default behaviour. Users can explicitly

 configure this mode by usage of --sched-model option with irq value.

 Timer-based scheduling model

 The no-period-wakeup mode is an optional mode of runtime of PCM substream. The mode as?

 sumes a specific feature of hardware and assist of in-kernel driver and PCM applications.

 In this mode, in-kernel drivers don't operate hardware to generate periodical notification

 for transmission of audio data frame. The hardware should automatically continue trans?

 mission of audio data frame without periodical operation of the drivers; e.g. according to

 auto-triggered DMA transmission, a chain of registered descriptors.

 In this mode, nothing wakes up blocked processes, therefore PCM applications should be

 programmed without any blocking operation. For this reason, this mode is enabled when the

 PCM applications explicitly configure hardware parameter to runtime of PCM substream, to

 prevent disorder of existing applications. Additionally, nothing maintains timing for

 transmission of audio data frame, therefore the PCM applications should voluntarily handle

 any timer to queue audio data frame in buffer of the PCM substream for lapse of time. Fur?

 thermore, instead of driver, the PCM application should call a helper function of ALSA PCM

 core to update a position to head of hardware transmission and to check XRUN.

 In axfer , this is called timer-based scheduling model and available as long as hard?

 ware/driver assists no-period-wakeup runtime. Users should explicitly set this mode by us?

 age of --sched-model option with timer value.

 In the scheduling model, PCM applications need to care of available space on PCM buffer by

 lapse of time, typically by yielding CPU and wait for rescheduling. For the yielding,

 timeout is calculated for preferable amount of PCM frames to process. This is convenient

 to a kind of applications, like sound servers. when an I/O thread of the server wait for

 the timeout, the other threads can process audio data frames for server clients. Further?

 more, with usage of rewinding/forwarding, applications can achieve low latency between

 transmission position and handling position even if they uses large size of PCM buffers.

 Advantages and issues

 Ideally, timer-based scheduling model has some advantages than IRQ-based scheduling model.

 At first, no interrupt context runs for PCM substream. The PCM substream is handled in any

 process context only. No need to care of race conditions between IRQ and process contexts.

 This reduces some concerns for some developers of drivers and applications. Secondary, CPU Page 11/15

 time is not used for handlers on the interrupt context. The CPU time can be dedicated for

 the other tasks. This is good in a point of Time Sharing System. Thirdly, hardware is not

 configured to generate interrupts. This is good in a point of reduction of overall power

 consumption possibly.

 In either scheduling model, the hardware should allow drivers to read the number of audio

 data frame transferred between the dedicated memory and the device memory for audio serial

 bus. However, in timer-based scheduling model, fine granularity and accuracy of the value

 is important. Actually hardware performs transmission between dedicated memory and device

 memory for a small batch of audio data frames or bytes. In a view of PCM applications, the

 granularity in current transmission is required to decide correct timeout for each I/O op?

 eration. As of Linux kernel v4.21, ALSA PCM interface between kernel/userspace has no fea?

 ture to report it.

COMPATIBILITY TO APLAY

 The transfer subcommand of axfer is designed to keep compatibility to aplay(1). However

 some options below are not compatible due to several technical reasons.

 -I, --separate-channels

 This option is supported just for files to store audio data frames corresponding to

 each channel. In aplay(1) implementation, this option has an additional effect to

 use PCM buffer aligned to non-interleaved order if a target device supports. As of

 2018, PCM buffer of non-interleaved order is hardly used by sound devices.

 -A, --avail-min=#

 This option indicates threshold to wake up blocked process in a unit of audio data

 frame. Against aplay(1) implementation, this option has no effect with --mmap op?

 tion as well as timer of --sched-model option.

 -R, --start-delay=#

 This option indicates threshold to start prepared PCM substream in a unit of audio

 data frame. Against aplay(1) implementation, this option has no effect with --mmap

 option as well as timer of --sched-model option.

 -T, --stop-delay=#

 This option indicates threshold to stop running PCM substream in a unit of audio

 data frame. Against aplay(1) implementation, this option has no effect with --mmap

 option as well as timer of --sched-model option.

 --max-file-time=# Page 12/15

 This option is unsupported. In aplay(1) implementation, the option has an effect

 for capture transmission to save files up to the same number of data frames as the

 given value by second unit, or the maximum number of data frames supported by used

 file format. When reaching to the limitation, used file is closed, then new file is

 opened and audio data frames are written. However, this option requires extra han?

 dling of files and shall increase complexity of main loop of axfer.

 --use-strftime=FORMAT

 This option is unsupported. In aplay(1) implementation, the option has an effect

 for capture transmission to generate file paths according to given format in which

 some extra formats are available as well as formats supported by strftime(3). How?

 ever, this option requires extra string processing for file paths and it's bother?

 some if written in C language.

 --process-id-file=FILEPATH

 This option is unsupported. In aplay(1) implementation, the option has an effect to

 create a file for given value and write out process ID to it. This file allows

 users to get process ID and send any POSIX signal to aplay process. However, this

 idea has some troubles for file locking when multiple aplay processes run with the

 same file.

 -V, --vumeter=TYPE

 This option is not supported at present. In aplay(1) implementation, this option

 has an effect to occupy stdout with some terminal control characters and display

 vumeter for monaural and stereo channels. However, some problems lay; this feature

 is just for audio data frames with PCM format, this feature brings disorder of ter?

 minal after aborting, stdout is not available for pipeline.

 -i, --interactive

 This option is not supported at present. In aplay(1) implementation, this option

 has an effect to occupy stdin for key input and suspend/resume PCM substream ac?

 cording to pushed enter key. However, this feature requires an additional input

 handling in main loop and leave bothersome operation to maintain PCM substream.

 -m, --chmap=CH1,CH2,...

 ALSA PCM core and control core doesn't support this feature, therefore remapping

 should be done in userspace. This brings overhead to align audio data frames, espe?

 cially for mmap operation. Furthermore, as of alsa-lib v1.1.8, some plugins don't Page 13/15

 support this feature expectedly, thus this option is a lack of transparent opera?

 tion. At present, this option is not supported yet not to confuse users.

 SIGTSTP, SIGCONT

 This performs suspend/resume of PCM substream. In aplay(1) implementation, these

 operations bring XRUN state to the substream, and suspend/resume is done in inter?

 active mode in the above. Some developers use the signal for recovery test from

 XRUN. At present, no alternative is supported for the test.

 SIGUSR1

 This is not supported. In aplay(1) implementation, this signal is assigned to a

 handler to close a current file to store audio data frame and open a new file to

 continue processing. However, as well as --max-file-time option, this option should

 increase complexity of main loop of axfer.

DESIGN

 Modular structure

 This program consists of three modules; xfer , mapper and container . Each module has an

 abstraction layer to enable actual implementation.

 -------- ---------- -------------

 device <-> | xfer | <-> | mapper | <-> | container | <-> file

 -------- ---------- -------------

 libasound single wav

 libffado multiple au

 voc

 raw

 The xfer module performs actual transmission to devices and nodes. The module can have

 several transmission backends. As a default backend, libasound backend is used to perform

 transmission via alsa-lib APIs. The module allows each backend to parse own command line

 options.

 The container module performs to read/write audio data frame via descriptor for

 file/stream of multimedia container or raw data. The module automatically detect type of

 multimedia container and parse parameters in its metadata of data header. At present,

 three types of multimedia containers are supported; Microsoft/IBM RIFF/Wave (wav), Sparc

 AU (au) and Creative Technology voice (voc). Additionally, a special container is pre?

 pared for raw audio data (raw). Page 14/15

 The mapper module handles buffer layout and alignment for transmission of audio data

 frame. The module has two implementations; single and multiple . The single backend uses

 one container to construct the buffer. The multiple backend uses several containers to

 construct it.

 Care of copying audio data frame

 Between the xfer module and mapper module, a pointer to buffer including audio data frames

 is passed. This buffer has two shapes for interleaved and non-interleaved order. For the

 former, the pointer points to one buffer. For the latter, the pointer points to an array

 in which each element points to one buffer. Between the mapper module and container mod?

 ule, a pointer to one buffer is passed because supported media containers including raw

 type store audio data frames in interleaved order.

 In passing audio data frame between the modules, axfer is programmed to avoid copying be?

 tween a buffer to another buffer as much as possible. For example, in some scenarios be?

 low, no copying occurs between modules.

 - xfer(mmap/interleaved), mapper(single), container(any)

 - xfer(mmap/non-interleaved), mapper(multiple), containers(any)

 Unit test

 For each of the mapper and container module, unit test is available. To run the tests, ex?

 ecute below command:

 $ make test

 Each test iterates writing to file and reading to the file for many times and it takes

 long time to finish. Please take care of the execution time if running on any CI environ?

 ment.

SEE ALSO

 axfer(1), axfer-list(1), alsamixer(1), amixer(1)

AUTHOR

 Takashi Sakamoto <o-takashi@sakamocchi.jp>

alsa-utils 28 November 2018 AXFER-TRANSFER(1)

Page 15/15

