
Rocky Enterprise Linux 9.2 Manual Pages on command 'btree.3'

$ man btree.3

BTREE(3) Linux Programmer's Manual BTREE(3)

NAME

 btree - btree database access method

SYNOPSIS

 #include <sys/types.h>

 #include <db.h>

DESCRIPTION

 Note well: This page documents interfaces provided in glibc up until version 2.1. Since

 version 2.2, glibc no longer provides these interfaces. Probably, you are looking for the

 APIs provided by the libdb library instead.

 The routine dbopen(3) is the library interface to database files. One of the supported

 file formats is btree files. The general description of the database access methods is in

 dbopen(3), this manual page describes only the btree-specific information.

 The btree data structure is a sorted, balanced tree structure storing associated key/data

 pairs.

 The btree access-method-specific data structure provided to dbopen(3) is defined in the

 <db.h> include file as follows:

 typedef struct {

 unsigned long flags;

 unsigned int cachesize;

 int maxkeypage;

 int minkeypage;

 unsigned int psize; Page 1/4

 int (*compare)(const DBT *key1, const DBT *key2);

 size_t (*prefix)(const DBT *key1, const DBT *key2);

 int lorder;

 } BTREEINFO;

 The elements of this structure are as follows:

 flags The flag value is specified by ORing any of the following values:

 R_DUP Permit duplicate keys in the tree, that is, permit insertion if the key to

 be inserted already exists in the tree. The default behavior, as described

 in dbopen(3), is to overwrite a matching key when inserting a new key or to

 fail if the R_NOOVERWRITE flag is specified. The R_DUP flag is overridden

 by the R_NOOVERWRITE flag, and if the R_NOOVERWRITE flag is specified, at?

 tempts to insert duplicate keys into the tree will fail.

 If the database contains duplicate keys, the order of retrieval of key/data

 pairs is undefined if the get routine is used, however, seq routine calls

 with the R_CURSOR flag set will always return the logical "first" of any

 group of duplicate keys.

 cachesize

 A suggested maximum size (in bytes) of the memory cache. This value is only advi?

 sory, and the access method will allocate more memory rather than fail. Since ev?

 ery search examines the root page of the tree, caching the most recently used pages

 substantially improves access time. In addition, physical writes are delayed as

 long as possible, so a moderate cache can reduce the number of I/O operations sig?

 nificantly. Obviously, using a cache increases (but only increases) the likelihood

 of corruption or lost data if the system crashes while a tree is being modified.

 If cachesize is 0 (no size is specified), a default cache is used.

 maxkeypage

 The maximum number of keys which will be stored on any single page. Not currently

 implemented.

 minkeypage

 The minimum number of keys which will be stored on any single page. This value is

 used to determine which keys will be stored on overflow pages, that is, if a key or

 data item is longer than the pagesize divided by the minkeypage value, it will be

 stored on overflow pages instead of in the page itself. If minkeypage is 0 (no Page 2/4

 minimum number of keys is specified), a value of 2 is used.

 psize Page size is the size (in bytes) of the pages used for nodes in the tree. The min?

 imum page size is 512 bytes and the maximum page size is 64 KiB. If psize is 0 (no

 page size is specified), a page size is chosen based on the underlying filesystem

 I/O block size.

 compare

 Compare is the key comparison function. It must return an integer less than, equal

 to, or greater than zero if the first key argument is considered to be respectively

 less than, equal to, or greater than the second key argument. The same comparison

 function must be used on a given tree every time it is opened. If compare is NULL

 (no comparison function is specified), the keys are compared lexically, with

 shorter keys considered less than longer keys.

 prefix Prefix is the prefix comparison function. If specified, this routine must return

 the number of bytes of the second key argument which are necessary to determine

 that it is greater than the first key argument. If the keys are equal, the key

 length should be returned. Note, the usefulness of this routine is very data-de?

 pendent, but, in some data sets can produce significantly reduced tree sizes and

 search times. If prefix is NULL (no prefix function is specified), and no compari?

 son function is specified, a default lexical comparison routine is used. If prefix

 is NULL and a comparison routine is specified, no prefix comparison is done.

 lorder The byte order for integers in the stored database metadata. The number should

 represent the order as an integer; for example, big endian order would be the num?

 ber 4,321. If lorder is 0 (no order is specified), the current host order is used.

 If the file already exists (and the O_TRUNC flag is not specified), the values specified

 for the arguments flags, lorder, and psize are ignored in favor of the values used when

 the tree was created.

 Forward sequential scans of a tree are from the least key to the greatest.

 Space freed up by deleting key/data pairs from the tree is never reclaimed, although it is

 normally made available for reuse. This means that the btree storage structure is grow-

 only. The only solutions are to avoid excessive deletions, or to create a fresh tree pe?

 riodically from a scan of an existing one.

 Searches, insertions, and deletions in a btree will all complete in O lg base N where base

 is the average fill factor. Often, inserting ordered data into btrees results in a low Page 3/4

 fill factor. This implementation has been modified to make ordered insertion the best

 case, resulting in a much better than normal page fill factor.

ERRORS

 The btree access method routines may fail and set errno for any of the errors specified

 for the library routine dbopen(3).

BUGS

 Only big and little endian byte order is supported.

SEE ALSO

 dbopen(3), hash(3), mpool(3), recno(3)

 The Ubiquitous B-tree, Douglas Comer, ACM Comput. Surv. 11, 2 (June 1979), 121-138.

 Prefix B-trees, Bayer and Unterauer, ACM Transactions on Database Systems, Vol. 2, 1

 (March 1977), 11-26.

 The Art of Computer Programming Vol. 3: Sorting and Searching, D.E. Knuth, 1968, pp

 471-480.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

 2020-12-21 BTREE(3)

Page 4/4

