
Rocky Enterprise Linux 9.2 Manual Pages on command 'btrfs-balance.8'

$ man btrfs-balance.8

BTRFS-BALANCE(8) Btrfs Manual BTRFS-BALANCE(8)

NAME

 btrfs-balance - balance block groups on a btrfs filesystem

SYNOPSIS

 btrfs balance <subcommand> <args>

DESCRIPTION

 The primary purpose of the balance feature is to spread block groups across all devices so

 they match constraints defined by the respective profiles. See mkfs.btrfs(8) section

 PROFILES for more details. The scope of the balancing process can be further tuned by use

 of filters that can select the block groups to process. Balance works only on a mounted

 filesystem. Extent sharing is preserved and reflinks are not broken. Files are not

 defragmented nor recompressed, file extents are preserved but the physical location on

 devices will change.

 The balance operation is cancellable by the user. The on-disk state of the filesystem is

 always consistent so an unexpected interruption (eg. system crash, reboot) does not

 corrupt the filesystem. The progress of the balance operation is temporarily stored as an

 internal state and will be resumed upon mount, unless the mount option skip_balance is

 specified.

 Warning

 running balance without filters will take a lot of time as it basically move

 data/metadata from the whol filesystem and needs to update all block pointers.

 The filters can be used to perform following actions:

 ? convert block group profiles (filter convert) Page 1/9

 ? make block group usage more compact (filter usage)

 ? perform actions only on a given device (filters devid, drange)

 The filters can be applied to a combination of block group types (data, metadata, system).

 Note that changing only the system type needs the force option. Otherwise system gets

 automatically converted whenever metadata profile is converted.

 When metadata redundancy is reduced (eg. from RAID1 to single) the force option is also

 required and it is noted in system log.

 Note

 the balance operation needs enough work space, ie. space that is completely unused in

 the filesystem, otherwise this may lead to ENOSPC reports. See the section ENOSPC for

 more details.

COMPATIBILITY

 Note

 The balance subcommand also exists under the btrfs filesystem namespace. This still

 works for backward compatibility but is deprecated and should not be used any more.

 Note

 A short syntax btrfs balance <path> works due to backward compatibility but is

 deprecated and should not be used any more. Use btrfs balance start command instead.

PERFORMANCE IMPLICATIONS

 Balancing operations are very IO intensive and can also be quite CPU intensive, impacting

 other ongoing filesystem operations. Typically large amounts of data are copied from one

 location to another, with corresponding metadata updates.

 Depending upon the block group layout, it can also be seek heavy. Performance on

 rotational devices is noticeably worse compared to SSDs or fast arrays.

SUBCOMMAND

 cancel <path>

 cancels a running or paused balance, the command will block and wait until the current

 blockgroup being processed completes

 Since kernel 5.7 the response time of the cancellation is significantly improved, on

 older kernels it might take a long time until currently processed chunk is completely

 finished.

 pause <path>

 pause running balance operation, this will store the state of the balance progress and Page 2/9

 used filters to the filesystem

 resume <path>

 resume interrupted balance, the balance status must be stored on the filesystem from

 previous run, eg. after it was paused or forcibly interrupted and mounted again with

 skip_balance

 start [options] <path>

 start the balance operation according to the specified filters, without any filters

 the data and metadata from the whole filesystem are moved. The process runs in the

 foreground.

 Note

 the balance command without filters will basically move everything in the

 filesystem to a new physical location on devices (ie. it does not affect the

 logical properties of file extents like offsets within files and extent sharing).

 The run time is potentially very long, depending on the filesystem size. To

 prevent starting a full balance by accident, the user is warned and has a few

 seconds to cancel the operation before it starts. The warning and delay can be

 skipped with --full-balance option.

 Please note that the filters must be written together with the -d, -m and -s options,

 because they?re optional and bare -d and -m also work and mean no filters.

 Note

 when the target profile for conversion filter is raid5 or raid6, there?s a safety

 timeout of 10 seconds to warn users about the status of the feature

 Options

 -d[<filters>]

 act on data block groups, see FILTERS section for details about filters

 -m[<filters>]

 act on metadata chunks, see FILTERS section for details about filters

 -s[<filters>]

 act on system chunks (requires -f), see FILTERS section for details about filters.

 -f

 force a reduction of metadata integrity, eg. when going from raid1 to single, or

 skip safety timeout when the target conversion profile is raid5 or raid6

 --background|--bg Page 3/9

 run the balance operation asynchronously in the background, uses fork(2) to start

 the process that calls the kernel ioctl

 --enqueue

 wait if there?s another exclusive operation running, otherwise continue

 -v

 (deprecated) alias for global -v option

 status [-v] <path>

 Show status of running or paused balance.

 Options

 -v

 (deprecated) alias for global -v option

FILTERS

 From kernel 3.3 onwards, btrfs balance can limit its action to a subset of the whole

 filesystem, and can be used to change the replication configuration (e.g. moving data from

 single to RAID1). This functionality is accessed through the -d, -m or -s options to btrfs

 balance start, which filter on data, metadata and system blocks respectively.

 A filter has the following structure: type[=params][,type=...]

 The available types are:

 profiles=<profiles>

 Balances only block groups with the given profiles. Parameters are a list of profile

 names separated by "|" (pipe).

 usage=<percent>, usage=<range>

 Balances only block groups with usage under the given percentage. The value of 0 is

 allowed and will clean up completely unused block groups, this should not require any

 new work space allocated. You may want to use usage=0 in case balance is returning

 ENOSPC and your filesystem is not too full.

 The argument may be a single value or a range. The single value N means at most N

 percent used, equivalent to ..N range syntax. Kernels prior to 4.4 accept only the

 single value format. The minimum range boundary is inclusive, maximum is exclusive.

 devid=<id>

 Balances only block groups which have at least one chunk on the given device. To list

 devices with ids use btrfs filesystem show.

 drange=<range> Page 4/9

 Balance only block groups which overlap with the given byte range on any device. Use

 in conjunction with devid to filter on a specific device. The parameter is a range

 specified as start..end.

 vrange=<range>

 Balance only block groups which overlap with the given byte range in the filesystem?s

 internal virtual address space. This is the address space that most reports from btrfs

 in the kernel log use. The parameter is a range specified as start..end.

 convert=<profile>

 Convert each selected block group to the given profile name identified by parameters.

 Note

 starting with kernel 4.5, the data chunks can be converted to/from the DUP profile

 on a single device.

 Note

 starting with kernel 4.6, all profiles can be converted to/from DUP on

 multi-device filesystems.

 limit=<number>, limit=<range>

 Process only given number of chunks, after all filters are applied. This can be used

 to specifically target a chunk in connection with other filters (drange, vrange) or

 just simply limit the amount of work done by a single balance run.

 The argument may be a single value or a range. The single value N means at most N

 chunks, equivalent to ..N range syntax. Kernels prior to 4.4 accept only the single

 value format. The range minimum and maximum are inclusive.

 stripes=<range>

 Balance only block groups which have the given number of stripes. The parameter is a

 range specified as start..end. Makes sense for block group profiles that utilize

 striping, ie. RAID0/10/5/6. The range minimum and maximum are inclusive.

 soft

 Takes no parameters. Only has meaning when converting between profiles. When doing

 convert from one profile to another and soft mode is on, chunks that already have the

 target profile are left untouched. This is useful e.g. when half of the filesystem was

 converted earlier but got cancelled.

 The soft mode switch is (like every other filter) per-type. For example, this means

 that we can convert metadata chunks the "hard" way while converting data chunks Page 5/9

 selectively with soft switch.

 Profile names, used in profiles and convert are one of: raid0, raid1, raid1c3, raid1c4,

 raid10, raid5, raid6, dup, single. The mixed data/metadata profiles can be converted in

 the same way, but it?s conversion between mixed and non-mixed is not implemented. For the

 constraints of the profiles please refer to mkfs.btrfs(8), section PROFILES.

ENOSPC

 The way balance operates, it usually needs to temporarily create a new block group and

 move the old data there, before the old block group can be removed. For that it needs the

 work space, otherwise it fails for ENOSPC reasons. This is not the same ENOSPC as if the

 free space is exhausted. This refers to the space on the level of block groups, which are

 bigger parts of the filesystem that contain many file extents.

 The free work space can be calculated from the output of the btrfs filesystem show

 command:

 Label: 'BTRFS' uuid: 8a9d72cd-ead3-469d-b371-9c7203276265

 Total devices 2 FS bytes used 77.03GiB

 devid 1 size 53.90GiB used 51.90GiB path /dev/sdc2

 devid 2 size 53.90GiB used 51.90GiB path /dev/sde1

 size - used = free work space 53.90GiB - 51.90GiB = 2.00GiB

 An example of a filter that does not require workspace is usage=0. This will scan through

 all unused block groups of a given type and will reclaim the space. After that it might be

 possible to run other filters.

 CONVERSIONS ON MULTIPLE DEVICES

 Conversion to profiles based on striping (RAID0, RAID5/6) require the work space on each

 device. An interrupted balance may leave partially filled block groups that consume the

 work space.

EXAMPLES

 A more comprehensive example when going from one to multiple devices, and back, can be

 found in section TYPICAL USECASES of btrfs-device(8).

 MAKING BLOCK GROUP LAYOUT MORE COMPACT

 The layout of block groups is not normally visible; most tools report only summarized

 numbers of free or used space, but there are still some hints provided.

 Let?s use the following real life example and start with the output:

 $ btrfs filesystem df /path Page 6/9

 Data, single: total=75.81GiB, used=64.44GiB

 System, RAID1: total=32.00MiB, used=20.00KiB

 Metadata, RAID1: total=15.87GiB, used=8.84GiB

 GlobalReserve, single: total=512.00MiB, used=0.00B

 Roughly calculating for data, 75G - 64G = 11G, the used/total ratio is about 85%. How can

 we can interpret that:

 ? chunks are filled by 85% on average, ie. the usage filter with anything smaller than

 85 will likely not affect anything

 ? in a more realistic scenario, the space is distributed unevenly, we can assume there

 are completely used chunks and the remaining are partially filled

 Compacting the layout could be used on both. In the former case it would spread data of a

 given chunk to the others and removing it. Here we can estimate that roughly 850 MiB of

 data have to be moved (85% of a 1 GiB chunk).

 In the latter case, targeting the partially used chunks will have to move less data and

 thus will be faster. A typical filter command would look like:

 # btrfs balance start -dusage=50 /path

 Done, had to relocate 2 out of 97 chunks

 $ btrfs filesystem df /path

 Data, single: total=74.03GiB, used=64.43GiB

 System, RAID1: total=32.00MiB, used=20.00KiB

 Metadata, RAID1: total=15.87GiB, used=8.84GiB

 GlobalReserve, single: total=512.00MiB, used=0.00B

 As you can see, the total amount of data is decreased by just 1 GiB, which is an expected

 result. Let?s see what will happen when we increase the estimated usage filter.

 # btrfs balance start -dusage=85 /path

 Done, had to relocate 13 out of 95 chunks

 $ btrfs filesystem df /path

 Data, single: total=68.03GiB, used=64.43GiB

 System, RAID1: total=32.00MiB, used=20.00KiB

 Metadata, RAID1: total=15.87GiB, used=8.85GiB

 GlobalReserve, single: total=512.00MiB, used=0.00B

 Now the used/total ratio is about 94% and we moved about 74G - 68G = 6G of data to the

 remaining blockgroups, ie. the 6GiB are now free of filesystem structures, and can be Page 7/9

 reused for new data or metadata block groups.

 We can do a similar exercise with the metadata block groups, but this should not typically

 be necessary, unless the used/total ratio is really off. Here the ratio is roughly 50% but

 the difference as an absolute number is "a few gigabytes", which can be considered normal

 for a workload with snapshots or reflinks updated frequently.

 # btrfs balance start -musage=50 /path

 Done, had to relocate 4 out of 89 chunks

 $ btrfs filesystem df /path

 Data, single: total=68.03GiB, used=64.43GiB

 System, RAID1: total=32.00MiB, used=20.00KiB

 Metadata, RAID1: total=14.87GiB, used=8.85GiB

 GlobalReserve, single: total=512.00MiB, used=0.00B

 Just 1 GiB decrease, which possibly means there are block groups with good utilization.

 Making the metadata layout more compact would in turn require updating more metadata

 structures, ie. lots of IO. As running out of metadata space is a more severe problem,

 it?s not necessary to keep the utilization ratio too high. For the purpose of this

 example, let?s see the effects of further compaction:

 # btrfs balance start -musage=70 /path

 Done, had to relocate 13 out of 88 chunks

 $ btrfs filesystem df .

 Data, single: total=68.03GiB, used=64.43GiB

 System, RAID1: total=32.00MiB, used=20.00KiB

 Metadata, RAID1: total=11.97GiB, used=8.83GiB

 GlobalReserve, single: total=512.00MiB, used=0.00B

 GETTING RID OF COMPLETELY UNUSED BLOCK GROUPS

 Normally the balance operation needs a work space, to temporarily move the data before the

 old block groups gets removed. If there?s no work space, it ends with no space left.

 There?s a special case when the block groups are completely unused, possibly left after

 removing lots of files or deleting snapshots. Removing empty block groups is automatic

 since 3.18. The same can be achieved manually with a notable exception that this operation

 does not require the work space. Thus it can be used to reclaim unused block groups to

 make it available.

 # btrfs balance start -dusage=0 /path Page 8/9

 This should lead to decrease in the total numbers in the btrfs filesystem df output.

EXIT STATUS

 Unless indicated otherwise below, all btrfs balance subcommands return a zero exit status

 if they succeed, and non zero in case of failure.

 The pause, cancel, and resume subcommands exit with a status of 2 if they fail because a

 balance operation was not running.

 The status subcommand exits with a status of 0 if a balance operation is not running, 1 if

 the command-line usage is incorrect or a balance operation is still running, and 2 on

 other errors.

AVAILABILITY

 btrfs is part of btrfs-progs. Please refer to the btrfs wiki http://btrfs.wiki.kernel.org

 for further details.

SEE ALSO

 mkfs.btrfs(8), btrfs-device(8)

Btrfs v5.16.2 02/16/2022 BTRFS-BALANCE(8)

Page 9/9

