
Rocky Enterprise Linux 9.2 Manual Pages on command 'buildah-from.1'

$ man buildah-from.1

buildah-from(1) General Commands Manual buildah-from(1)

NAME

 buildah-from - Creates a new working container, either from scratch or using a specified

 image as a starting point.

SYNOPSIS

 buildah from [options] image

DESCRIPTION

 Creates a working container based upon the specified image name. If the supplied image

 name is "scratch" a new empty container is created. Image names use a "transport":"de?

 tails" format.

 Multiple transports are supported:

 dir:path

 An existing local directory path containing the manifest, layer tarballs, and signatures

 in individual files. This is a non-standardized format, primarily useful for debugging or

 noninvasive image inspection.

 docker://docker-reference (Default)

 An image in a registry implementing the "Docker Registry HTTP API V2". By default, uses

 the authorization state in $XDG_RUNTIME_DIR/containers/auth.json, which is set using

 (buildah login). If XDG_RUNTIME_DIR is not set, the default is /run/contain?

 ers/$UID/auth.json. If the authorization state is not found there, $HOME/.docker/con?

 fig.json is checked, which is set using (docker login).

 If docker-reference does not include a registry name, localhost will be consulted first,

 followed by any registries named in the registries configuration. Page 1/15

 docker-archive:path

 An image is retrieved as a docker load formatted file.

 docker-daemon:docker-reference

 An image docker-reference stored in the docker daemon's internal storage. docker-refer?

 ence must include either a tag or a digest. Alternatively, when reading images, the for?

 mat can also be docker-daemon:algo:digest (an image ID).

 oci:path:tag**

 An image tag in a directory compliant with "Open Container Image Layout Specification"

 at path.

 oci-archive:path:tag

 An image tag in a directory compliant with "Open Container Image Layout Specification"

 at path.

 DEPENDENCIES

 Buildah resolves the path to the registry to pull from by using the /etc/containers/reg?

 istries.conf file, containers-registries.conf(5). If the buildah from command fails with

 an "image not known" error, first verify that the registries.conf file is installed and

 configured appropriately.

RETURN VALUE

 The container ID of the container that was created. On error 1 is returned.

OPTIONS

 --add-host=[]

 Add a custom host-to-IP mapping (host:ip)

 Add a line to /etc/hosts. The format is hostname:ip. The --add-host option can be set mul?

 tiple times.

 --arch="ARCH"

 Set the ARCH of the image to be pulled to the provided value instead of using the archi?

 tecture of the host. (Examples: arm, arm64, 386, amd64, ppc64le, s390x)

 --authfile path

 Path of the authentication file. Default is ${XDG_\RUNTIME_DIR}/containers/auth.json. If

 XDG_RUNTIME_DIR is not set, the default is /run/containers/$UID/auth.json. This file is

 created using using buildah login.

 If the authorization state is not found there, $HOME/.docker/config.json is checked, which

 is set using docker login. Page 2/15

 Note: You can also override the default path of the authentication file by setting the

 REGISTRY_AUTH_FILE environment variable. export REGISTRY_AUTH_FILE=path

 --cap-add=CAP_xxx

 Add the specified capability to the default set of capabilities which will be supplied for

 subsequent buildah run invocations which use this container. Certain capabilities are

 granted by default; this option can be used to add more.

 --cap-drop=CAP_xxx

 Remove the specified capability from the default set of capabilities which will be sup?

 plied for subsequent buildah run invocations which use this container. The CAP_AU?

 DIT_WRITE, CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_FOWNER, CAP_FSETID, CAP_KILL, CAP_MKNOD,

 CAP_NET_BIND_SERVICE, CAP_SETFCAP, CAP_SETGID, CAP_SETPCAP, CAP_SETUID, and

CAP_SYS_CHROOT

 capabilities are granted by default; this option can be used to remove them.

 If a capability is specified to both the --cap-add and --cap-drop options, it will be

 dropped, regardless of the order in which the options were given.

 --cert-dir path

 Use certificates at path (*.crt, *.cert, *.key) to connect to the registry. The default

 certificates directory is /etc/containers/certs.d.

 --cgroup-parent=""

 Path to cgroups under which the cgroup for the container will be created. If the path is

 not absolute, the path is considered to be relative to the cgroups path of the init

 process. Cgroups will be created if they do not already exist.

 --cidfile ContainerIDFile

 Write the container ID to the file.

 --cni-config-dir=directory

 Location of CNI configuration files which will dictate which plugins will be used to con?

 figure network interfaces and routing when the container is subsequently used for buildah

 run, if processes to be started will be run in their own network namespaces, and network?

 ing is not disabled.

 --cni-plugin-path=directory[:directory[:directory[...]]]

 List of directories in which the CNI plugins which will be used for configuring network

 namespaces can be found.

 --cpu-period=0 Page 3/15

 Limit the CPU CFS (Completely Fair Scheduler) period

 Limit the container's CPU usage. This flag tell the kernel to restrict the container's CPU

 usage to the period you specify.

 --cpu-quota=0

 Limit the CPU CFS (Completely Fair Scheduler) quota

 Limit the container's CPU usage. By default, containers run with the full CPU resource.

 This flag tell the kernel to restrict the container's CPU usage to the quota you specify.

 --cpu-shares, -c=0

 CPU shares (relative weight)

 By default, all containers get the same proportion of CPU cycles. This proportion can be

 modified by changing the container's CPU share weighting relative to the weighting of all

 other running containers.

 To modify the proportion from the default of 1024, use the --cpu-shares flag to set the

 weighting to 2 or higher.

 The proportion will only apply when CPU-intensive processes are running. When tasks in

 one container are idle, other containers can use the left-over CPU time. The actual amount

 of CPU time will vary depending on the number of containers running on the system.

 For example, consider three containers, one has a cpu-share of 1024 and two others have a

 cpu-share setting of 512. When processes in all three containers attempt to use 100% of

 CPU, the first container would receive 50% of the total CPU time. If you add a fourth con?

 tainer with a cpu-share of 1024, the first container only gets 33% of the CPU. The remain?

 ing containers receive 16.5%, 16.5% and 33% of the CPU.

 On a multi-core system, the shares of CPU time are distributed over all CPU cores. Even if

 a container is limited to less than 100% of CPU time, it can use 100% of each individual

 CPU core.

 For example, consider a system with more than three cores. If you start one container {C0}

 with -c=512 running one process, and another container {C1} with -c=1024 running two pro?

 cesses, this can result in the following division of CPU shares:

 PID container CPU CPU share

 100 {C0} 0 100% of CPU0

 101 {C1} 1 100% of CPU1

 102 {C1} 2 100% of CPU2

 --cpuset-cpus="" Page 4/15

 CPUs in which to allow execution (0-3, 0,1)

 --cpuset-mems=""

 Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA sys?

 tems.

 If you have four memory nodes on your system (0-3), use --cpuset-mems=0,1 then processes

 in your container will only use memory from the first two memory nodes.

 --creds creds

 The [username[:password]] to use to authenticate with the registry if required. If one or

 both values are not supplied, a command line prompt will appear and the value can be en?

 tered. The password is entered without echo.

 --decryption-key key[:passphrase]

 The [key[:passphrase]] to be used for decryption of images. Key can point to keys and/or

 certificates. Decryption will be tried with all keys. If the key is protected by a

 passphrase, it is required to be passed in the argument and omitted otherwise.

 --device=device

 Add a host device or devices under a directory to the container. The format is <de?

 vice-on-host>[:<device-on-container>][:<permissions>] (e.g. --de?

 vice=/dev/sdc:/dev/xvdc:rwm)

 --dns=[]

 Set custom DNS servers

 This option can be used to override the DNS configuration passed to the container. Typi?

 cally this is necessary when the host DNS configuration is invalid for the container

 (e.g., 127.0.0.1). When this is the case the --dns flag is necessary for every run.

 The special value none can be specified to disable creation of /etc/resolv.conf in the

 container by Buildah. The /etc/resolv.conf file in the image will be used without changes.

 --dns-option=[]

 Set custom DNS options

 --dns-search=[]

 Set custom DNS search domains

 --format, -f oci | docker

 Control the format for the built image's manifest and configuration data. Recognized for?

 mats include oci (OCI image-spec v1.0, the default) and docker (version 2, using schema

 format 2 for the manifest). Page 5/15

 Note: You can also override the default format by setting the BUILDAH_FORMAT environment

 variable. export BUILDAH_FORMAT=docker

 --http-proxy

 By default proxy environment variables are passed into the container if set for the Buil?

 dah process. This can be disabled by setting the --http-proxy option to false. The envi?

 ronment variables passed in include http_proxy, https_proxy, ftp_proxy, no_proxy, and also

 the upper case versions of those.

 Defaults to true

 --ipc how

 Sets the configuration for IPC namespaces when the container is subsequently used for

 buildah run. The configured value can be "" (the empty string) or "container" to indicate

 that a new IPC namespace should be created, or it can be "host" to indicate that the IPC

 namespace in which Buildah itself is being run should be reused, or it can be the path to

 an IPC namespace which is already in use by another process.

 --isolation type

 Controls what type of isolation is used for running processes under buildah run. Recog?

 nized types include oci (OCI-compatible runtime, the default), rootless (OCI-compatible

 runtime invoked using a modified configuration, with --no-new-keyring added to its create

 invocation, reusing the host's network and UTS namespaces, and creating private IPC, PID,

 mount, and user namespaces; the default for unprivileged users), and chroot (an internal

 wrapper that leans more toward chroot(1) than container technology, reusing the host's

 control group, network, IPC, and PID namespaces, and creating private mount and UTS name?

 spaces, and creating user namespaces only when they're required for ID mapping).

 Note: You can also override the default isolation type by setting the BUILDAH_ISOLATION

 environment variable. export BUILDAH_ISOLATION=oci

 --memory, -m=""

 Memory limit (format: [], where unit = b, k, m or g)

 Allows you to constrain the memory available to a container. If the host supports swap

 memory, then the -m memory setting can be larger than physical RAM. If a limit of 0 is

 specified (not using -m), the container's memory is not limited. The actual limit may be

 rounded up to a multiple of the operating system's page size (the value would be very

 large, that's millions of trillions).

 --memory-swap="LIMIT" Page 6/15

 A limit value equal to memory plus swap. Must be used with the -m (--memory) flag. The

 swap LIMIT should always be larger than -m (--memory) value. By default, the swap LIMIT

 will be set to double the value of --memory.

 The format of LIMIT is <number>[<unit>]. Unit can be b (bytes), k (kilobytes), m

 (megabytes), or g (gigabytes). If you don't specify a unit, b is used. Set LIMIT to -1 to

 enable unlimited swap.

 --name name

 A name for the working container

 --net how --network how

 Sets the configuration for network namespaces when the container is subsequently used for

 buildah run. The configured value can be "" (the empty string) or "container" to indicate

 that a new network namespace should be created, or it can be "host" to indicate that the

 network namespace in which Buildah itself is being run should be reused, or it can be the

 path to a network namespace which is already in use by another process.

 --os="OS"

 Set the OS of the image to be pulled to the provided value instead of using the current

 operating system of the host.

 --pid how

 Sets the configuration for PID namespaces when the container is subsequently used for

 buildah run. The configured value can be "" (the empty string) or "container" to indicate

 that a new PID namespace should be created, or it can be "host" to indicate that the PID

 namespace in which Buildah itself is being run should be reused, or it can be the path to

 a PID namespace which is already in use by another process.

 --platform="OS/ARCH[/VARIANT]"

 Set the OS/ARCH of the image to be pulled to the provided value instead of using the cur?

 rent operating system and architecture of the host (for example linux/arm). If --platform

 is set, then the values of the --arch, --os, and --variant options will be overridden.

 OS/ARCH pairs are those used by the Go Programming Language. In several cases the ARCH

 value for a platform differs from one produced by other tools such as the arch command.

 Valid OS and architecture name combinations are listed as values for $GOOS and $GOARCH at

 https://golang.org/doc/install/source#environment, and can also be found by running go

 tool dist list.

 While buildah from is happy to pull an image for any platform that exists, buildah run Page 7/15

 will not be able to run binaries provided by that image without the help of emulation pro?

 vided by packages like qemu-user-static.

 --pull

 When the flag is enabled, attempt to pull the latest image from the registries listed in

 registries.conf if a local image does not exist or the image is newer than the one in

 storage. Raise an error if the image is not in any listed registry and is not present lo?

 cally.

 If the flag is disabled (with --pull=false), do not pull the image from the registry, use

 only the local version. Raise an error if the image is not present locally.

 Defaults to true.

 --pull-always

 Pull the image from the first registry it is found in as listed in registries.conf. Raise

 an error if not found in the registries, even if the image is present locally.

 --pull-never

 Do not pull the image from the registry, use only the local version. Raise an error if the

 image is not present locally.

 --quiet, -q

 If an image needs to be pulled from the registry, suppress progress output.

 --security-opt=[]

 Security Options

 "label=user:USER" : Set the label user for the container

 "label=role:ROLE" : Set the label role for the container

 "label=type:TYPE" : Set the label type for the container

 "label=level:LEVEL" : Set the label level for the container

 "label=disable" : Turn off label confinement for the container

 "no-new-privileges" : Not supported

 "seccomp=unconfined" : Turn off seccomp confinement for the container

 "seccomp=profile.json : White listed syscalls seccomp Json file to be used as a seccomp

 filter

 "apparmor=unconfined" : Turn off apparmor confinement for the container

 "apparmor=your-profile" : Set the apparmor confinement profile for the container

 --shm-size=""

 Size of /dev/shm. The format is <number><unit>. number must be greater than 0. Unit is Page 8/15

 optional and can be b (bytes), k (kilobytes), m(megabytes), or g (gigabytes). If you omit

 the unit, the system uses bytes. If you omit the size entirely, the system uses 64m.

 --tls-verify bool-value

 Require HTTPS and verification of certificates when talking to container registries (de?

 faults to true). TLS verification cannot be used when talking to an insecure registry.

 --ulimit type=soft-limit[:hard-limit]

 Specifies resource limits to apply to processes launched during buildah run. This option

 can be specified multiple times. Recognized resource types include:

 "core": maximum core dump size (ulimit -c)

 "cpu": maximum CPU time (ulimit -t)

 "data": maximum size of a process's data segment (ulimit -d)

 "fsize": maximum size of new files (ulimit -f)

 "locks": maximum number of file locks (ulimit -x)

 "memlock": maximum amount of locked memory (ulimit -l)

 "msgqueue": maximum amount of data in message queues (ulimit -q)

 "nice": niceness adjustment (nice -n, ulimit -e)

 "nofile": maximum number of open files (ulimit -n)

 "nofile": maximum number of open files (1048576); when run by root

 "nproc": maximum number of processes (ulimit -u)

 "nproc": maximum number of processes (1048576); when run by root

 "rss": maximum size of a process's (ulimit -m)

 "rtprio": maximum real-time scheduling priority (ulimit -r)

 "rttime": maximum amount of real-time execution between blocking syscalls

 "sigpending": maximum number of pending signals (ulimit -i)

 "stack": maximum stack size (ulimit -s)

 --userns how

 Sets the configuration for user namespaces when the container is subsequently used for

 buildah run. The configured value can be "" (the empty string) or "container" to indicate

 that a new user namespace should be created, it can be "host" to indicate that the user

 namespace in which Buildah itself is being run should be reused, or it can be the path to

 an user namespace which is already in use by another process.

 --userns-uid-map-user mapping

 Directly specifies a UID mapping which should be used to set ownership, at the filesystem Page 9/15

 level, on the container's contents. Commands run using buildah run will default to being

 run in their own user namespaces, configured using the UID and GID maps.

 Entries in this map take the form of one or more triples of a starting in-container UID, a

 corresponding starting host-level UID, and the number of consecutive IDs which the map en?

 try represents.

 This option overrides the remap-uids setting in the options section of /etc/contain?

 ers/storage.conf.

 If this option is not specified, but a global --userns-uid-map setting is supplied, set?

 tings from the global option will be used.

 If none of --userns-uid-map-user, --userns-gid-map-group, or --userns-uid-map are speci?

 fied, but --userns-gid-map is specified, the UID map will be set to use the same numeric

 values as the GID map.

 NOTE: When this option is specified by a rootless user, the specified mappings are rela?

 tive to the rootless usernamespace in the container, rather than being relative to the

 host as it would be when run rootful.

 --userns-gid-map-group mapping

 Directly specifies a GID mapping which should be used to set ownership, at the filesystem

 level, on the container's contents. Commands run using buildah run will default to being

 run in their own user namespaces, configured using the UID and GID maps.

 Entries in this map take the form of one or more triples of a starting in-container GID, a

 corresponding starting host-level GID, and the number of consecutive IDs which the map en?

 try represents.

 This option overrides the remap-gids setting in the options section of /etc/contain?

 ers/storage.conf.

 If this option is not specified, but a global --userns-gid-map setting is supplied, set?

 tings from the global option will be used.

 If none of --userns-uid-map-user, --userns-gid-map-group, or --userns-gid-map are speci?

 fied, but --userns-uid-map is specified, the GID map will be set to use the same numeric

 values as the UID map.

 NOTE: When this option is specified by a rootless user, the specified mappings are rela?

 tive to the rootless usernamespace in the container, rather than being relative to the

 host as it would be when run rootful.

 --userns-uid-map-user user Page 10/15

 Specifies that a UID mapping which should be used to set ownership, at the filesystem

 level, on the container's contents, can be found in entries in the /etc/subuid file which

 correspond to the specified user. Commands run using buildah run will default to being

 run in their own user namespaces, configured using the UID and GID maps. If

 --userns-gid-map-group is specified, but --userns-uid-map-user is not specified, Buildah

 will assume that the specified group name is also a suitable user name to use as the de?

 fault setting for this option.

 --userns-gid-map-group group

 Specifies that a GID mapping which should be used to set ownership, at the filesystem

 level, on the container's contents, can be found in entries in the /etc/subgid file which

 correspond to the specified group. Commands run using buildah run will default to being

 run in their own user namespaces, configured using the UID and GID maps. If

 --userns-uid-map-user is specified, but --userns-gid-map-group is not specified, Buildah

 will assume that the specified user name is also a suitable group name to use as the de?

 fault setting for this option.

 --uts how

 Sets the configuration for UTS namespaces when the container is subsequently used for

 buildah run. The configured value can be "" (the empty string) or "container" to indicate

 that a new UTS namespace should be created, or it can be "host" to indicate that the UTS

 namespace in which Buildah itself is being run should be reused, or it can be the path to

 a UTS namespace which is already in use by another process.

 --variant=""

 Set the architecture variant of the image to be pulled.

 --volume, -v[=[HOST-DIR:CONTAINER-DIR[:OPTIONS]]]

 Create a bind mount. If you specify, -v /HOST-DIR:/CONTAINER-DIR, Buildah

 bind mounts /HOST-DIR in the host to /CONTAINER-DIR in the Buildah

 container. The OPTIONS are a comma delimited list and can be: [1] ?#Footnote1?

 ? [rw|ro]

 ? [U]

 ? [z|Z|O]

 ? [[r]shared|[r]slave|[r]private|[r]unbindable]

 The CONTAINER-DIR must be an absolute path such as /src/docs. The HOST-DIR must be an ab?

 solute path as well. Buildah bind-mounts the HOST-DIR to the path you specify. For exam? Page 11/15

 ple, if you supply /foo as the host path, Buildah copies the contents of /foo to the con?

 tainer filesystem on the host and bind mounts that into the container.

 You can specify multiple -v options to mount one or more mounts to a container.

 Write Protected Volume Mounts

 You can add the :ro or :rw suffix to a volume to mount it read-only or read-write mode,

 respectively. By default, the volumes are mounted read-write. See examples.

 Chowning Volume Mounts

 By default, Buildah does not change the owner and group of source volume directories

 mounted into containers. If a container is created in a new user namespace, the UID and

 GID in the container may correspond to another UID and GID on the host.

 The :U suffix tells Buildah to use the correct host UID and GID based on the UID and GID

 within the container, to change the owner and group of the source volume.

 Labeling Volume Mounts

 Labeling systems like SELinux require that proper labels are placed on volume content

 mounted into a container. Without a label, the security system might prevent the processes

 running inside the container from using the content. By default, Buildah does not change

 the labels set by the OS.

 To change a label in the container context, you can add either of two suffixes :z or :Z to

 the volume mount. These suffixes tell Buildah to relabel file objects on the shared vol?

 umes. The z option tells Buildah that two containers share the volume content. As a re?

 sult, Buildah labels the content with a shared content label. Shared volume labels allow

 all containers to read/write content. The Z option tells Buildah to label the content

 with a private unshared label. Only the current container can use a private volume.

 Overlay Volume Mounts

 The :O flag tells Buildah to mount the directory from the host as a temporary storage us?

 ing the Overlay file system. The RUN command containers are allowed to modify contents

 within the mountpoint and are stored in the container storage in a separate directory. In

 Overlay FS terms the source directory will be the lower, and the container storage direc?

 tory will be the upper. Modifications to the mount point are destroyed when the RUN com?

 mand finishes executing, similar to a tmpfs mount point.

 Any subsequent execution of RUN commands sees the original source directory content, any

 changes from previous RUN commands no longer exists.

 One use case of the overlay mount is sharing the package cache from the host into the con? Page 12/15

 tainer to allow speeding up builds.

 Note:

 - The `O` flag is not allowed to be specified with the `Z` or `z` flags. Content mounted into the container is labeled

with the private label.

 On SELinux systems, labels in the source directory needs to be readable by the container label. If not, SELinux

container separation must be disabled for the container to work.

 - Modification of the directory volume mounted into the container with an overlay mount can cause unexpected

failures. It is recommended that you do not modify the directory until the container finishes running.

 By default bind mounted volumes are private. That means any mounts done inside container

 will not be visible on the host and vice versa. This behavior can be changed by specifying

 a volume mount propagation property.

 When the mount propagation policy is set to shared, any mounts completed inside the con?

 tainer on that volume will be visible to both the host and container. When the mount prop?

 agation policy is set to slave, one way mount propagation is enabled and any mounts com?

 pleted on the host for that volume will be visible only inside of the container. To con?

 trol the mount propagation property of the volume use the :[r]shared, :[r]slave, [r]pri?

 vate or [r]unbindablepropagation flag. The propagation property can be specified only for

 bind mounted volumes and not for internal volumes or named volumes. For mount propagation

 to work on the source mount point (the mount point where source dir is mounted on) it has

 to have the right propagation properties. For shared volumes, the source mount point has

 to be shared. And for slave volumes, the source mount has to be either shared or slave.

 [1] ?#Footnote1?

 Use df <source-dir> to determine the source mount and then use findmnt -o TARGET,PROPAGA?

 TION <source-mount-dir> to determine propagation properties of source mount, if findmnt

 utility is not available, the source mount point can be determined by looking at the mount

 entry in /proc/self/mountinfo. Look at optional fields and see if any propagation proper?

 ties are specified. shared:X means the mount is shared, master:X means the mount is slave

 and if nothing is there that means the mount is private. [1] ?#Footnote1?

 To change propagation properties of a mount point use the mount command. For example, to

 bind mount the source directory /foo do mount --bind /foo /foo and mount --make-private

 --make-shared /foo. This will convert /foo into a shared mount point. The propagation

 properties of the source mount can be changed directly. For instance if / is the source

 mount for /foo, then use mount --make-shared / to convert / into a shared mount. Page 13/15

EXAMPLE

 buildah from --pull imagename

 buildah from --pull docker://myregistry.example.com/imagename

 buildah from docker-daemon:imagename:imagetag

 buildah from --name mycontainer docker-archive:filename

 buildah from oci-archive:filename

 buildah from --name mycontainer dir:directoryname

 buildah from --pull-always --name "mycontainer" docker://myregistry.example.com/imagename

 buildah from --tls-verify=false myregistry/myrepository/imagename:imagetag

 buildah from --creds=myusername:mypassword --cert-dir /auth myregistry/myrepository/ima?

 gename:imagetag

 buildah from --authfile=/tmp/auths/myauths.json myregistry/myrepository/imagename:imagetag

 buildah from --memory 40m --cpu-shares 2 --cpuset-cpus 0,2 --security-opt la?

 bel=level:s0:c100,c200 myregistry/myrepository/imagename:imagetag

 buildah from --ulimit nofile=1024:1028 --cgroup-parent /path/to/cgroup/parent myreg?

 istry/myrepository/imagename:imagetag

 buildah from --volume /home/test:/myvol:ro,Z myregistry/myrepository/imagename:imagetag

 buildah from -v /home/test:/myvol:z,U myregistry/myrepository/imagename:imagetag

 buildah from -v /var/lib/yum:/var/lib/yum:O myregistry/myrepository/imagename:imagetag

 buildah from --arch=arm --variant v7 myregistry/myrepository/imagename:imagetag

ENVIRONMENT

 BUILD_REGISTRY_SOURCES

 BUILD_REGISTRY_SOURCES, if set, is treated as a JSON object which contains lists of reg?

 istry names under the keys insecureRegistries, blockedRegistries, and allowedRegistries.

 When pulling an image from a registry, if the name of the registry matches any of the

 items in the blockedRegistries list, the image pull attempt is denied. If there are reg?

 istries in the allowedRegistries list, and the registry's name is not in the list, the

 pull attempt is denied.

 TMPDIR The TMPDIR environment variable allows the user to specify where temporary files

 are stored while pulling and pushing images. Defaults to '/var/tmp'.

FILES

 registries.conf (/etc/containers/registries.conf)

 registries.conf is the configuration file which specifies which container registries Page 14/15

 should be consulted when completing image names which do not include a registry or domain

 portion.

 policy.json (/etc/containers/policy.json)

 Signature policy file. This defines the trust policy for container images. Controls

 which container registries can be used for image, and whether or not the tool should trust

 the images.

SEE ALSO

 buildah(1), buildah-pull(1), buildah-login(1), docker-login(1), namespaces(7), pid_name?

 spaces(7), containers-policy.json(5), containers-registries.conf(5), user_namespaces(7)

FOOTNOTES

 1: The Buildah project is committed to inclusivity, a core value of open source. The mas?

 ter and slave mount propagation terminology used here is problematic and divisive, and

 should be changed. However, these terms are currently used within the Linux kernel and

 must be used as-is at this time. When the kernel maintainers rectify this usage, Buildah

 will follow suit immediately.

buildah March 2017 buildah-from(1)

Page 15/15

