
Linux Ubuntu 22.4.5 Manual Pages on command 'bundle-install2.7.1'

$ man bundle-install2.7.1

BUNDLE-INSTALL(1)                                                        BUNDLE-INSTALL(1)

NAME

       bundle-install - Install the dependencies specified in your Gemfile

SYNOPSIS

       bundle   install   [--binstubs[=DIRECTORY]]   [--clean]  [--deployment]  [--frozen]

       [--full-index]   [--gemfile=GEMFILE]   [--jobs=NUMBER]    [--local]    [--no-cache]

       [--no-prune]  [--path  PATH]  [--quiet] [--redownload] [--retry=NUMBER] [--shebang]

       [--standalone[=GROUP[ GROUP...]]] [--system] [--trust-policy=POLICY] [--with=GROUP[

       GROUP...]] [--without=GROUP[ GROUP...]]

DESCRIPTION

       Install  the  gems  specified in your Gemfile(5). If this is the first time you run

       bundle install (and a Gemfile.lock does not exist), Bundler will fetch  all  remote

       sources, resolve dependencies and install all needed gems.

       If  a  Gemfile.lock  does  exist, and you have not updated your Gemfile(5), Bundler

       will fetch all remote sources, but use  the  dependencies  specified  in  the  Gem?

       file.lock instead of resolving dependencies.

       If  a  Gemfile.lock  does exist, and you have updated your Gemfile(5), Bundler will

       use the dependencies in the Gemfile.lock for all gems that you did not update,  but

       will re-resolve the dependencies of gems that you did update. You can find more in?

       formation about this update process below under CONSERVATIVE UPDATING.

OPTIONS

       To apply any of --binstubs, --deployment, --path, or --without  every  time  bundle
Page 1/9



       install is run, use bundle config (see bundle-config(1)).

       --binstubs[=<directory>]

              Binstubs  are  scripts that wrap around executables. Bundler creates a small

              Ruby file (a binstub) that loads Bundler, runs the command, and puts  it  in

              bin/.  This  lets you link the binstub inside of an application to the exact

              gem version the application needs.

              Creates a directory (defaults to ~/bin) and places any executables from  the

              gem  there.  These  executables run in Bundler?s context. If used, you might

              add this directory to your environment?s PATH variable. For instance, if the

              rails  gem  comes with a rails executable, this flag will create a bin/rails

              executable that ensures that all referred dependencies will be resolved  us?

              ing the bundled gems.

       --clean

              On  finishing  the  installation  Bundler  is  going  to remove any gems not

              present in the current Gemfile(5). Don?t worry, gems currently in  use  will

              not be removed.

       --deployment

              In  deployment mode, Bundler will ?roll-out? the bundle for production or CI

              use. Please check carefully if you want to have this option enabled in  your

              development environment.

       --redownload

              Force  download  every gem, even if the required versions are already avail?

              able locally.

       --frozen

              Do not allow the Gemfile.lock  to  be  updated  after  this  install.  Exits

              non-zero if there are going to be changes to the Gemfile.lock.

       --full-index

              Bundler  will  not  call  Rubygems?  API endpoint (default) but download and

              cache a (currently big) index file of all gems. Performance can be  improved

              for large bundles that seldom change by enabling this option.

       --gemfile=<gemfile>

              The  location of the Gemfile(5) which Bundler should use. This defaults to a

              Gemfile(5) in the current working directory. In general, Bundler will assume Page 2/9



              that  the location of the Gemfile(5) is also the project?s root and will try

              to find Gemfile.lock and vendor/cache relative to this location.

       --jobs=[<number>], -j[<number>]

              The maximum number of parallel download and install jobs. The default is 1.

       --local

              Do not attempt to connect to rubygems.org. Instead,  Bundler  will  use  the

              gems  already  present in Rubygems? cache or in vendor/cache. Note that if a

              appropriate platform-specific gem exists on  rubygems.org  it  will  not  be

              found.

       --no-cache

              Do  not  update  the cache in vendor/cache with the newly bundled gems. This

              does not remove any gems in the cache but keeps the newly bundled gems  from

              being cached during the install.

       --no-prune

              Don?t remove stale gems from the cache when the installation finishes.

       --path=<path>

              The  location  to  install the specified gems to. This defaults to Rubygems?

              setting. Bundler shares this location with Rubygems, gem  install  ...  will

              have  gem  installed  there, too. Therefore, gems installed without a --path

              ... setting will show up by calling gem list. Accordingly, gems installed to

              other locations will not get listed.

       --quiet

              Do  not  print progress information to the standard output. Instead, Bundler

              will exit using a status code ($?).

       --retry=[<number>]

              Retry failed network or git requests for number times.

       --shebang=<ruby-executable>

              Uses the specified ruby executable (usually ruby)  to  execute  the  scripts

              created  with  --binstubs.  In addition, if you use --binstubs together with

              --shebang jruby these executables will be changed to execute jruby instead.

       --standalone[=<list>]

              Makes a bundle that can work without depending on  Rubygems  or  Bundler  at

              runtime.  A  space  separated list of groups to install has to be specified. Page 3/9



              Bundler creates a directory named bundle and installs the bundle  there.  It

              also generates a bundle/bundler/setup.rb file to replace Bundler?s own setup

              in the manner required. Using this option implicitly sets path, which  is  a

              [remembered option][REMEMBERED OPTIONS].

       --system

              Installs the gems specified in the bundle to the system?s Rubygems location.

              This overrides any previous configuration of --path.

       --trust-policy=[<policy>]

              Apply the Rubygems security policy policy, where policy is one of  HighSecu?

              rity, MediumSecurity, LowSecurity, AlmostNoSecurity, or NoSecurity. For more

              details, please see the Rubygems signing documentation linked below  in  SEE

              ALSO.

       --with=<list>

              A space-separated list of groups referencing gems to install. If an optional

              group is given it is installed. If a group is given that is  in  the  remem?

              bered list of groups given to --without, it is removed from that list.

       --without=<list>

              A  space-separated  list of groups referencing gems to skip during installa?

              tion. If a group is given that is in the remembered list of groups given  to

              --with, it is removed from that list.

DEPLOYMENT MODE

       Bundler?s  defaults  are optimized for development. To switch to defaults optimized

       for deployment and for CI, use the --deployment flag. Do  not  activate  deployment

       mode on development machines, as it will cause an error when the Gemfile(5) is mod?

       ified.

       1.  A Gemfile.lock is required.

           To ensure that the same versions of the gems you developed with and tested with

           are also used in deployments, a Gemfile.lock is required.

           This is mainly to ensure that you remember to check your Gemfile.lock into ver?

           sion control.

       2.  The Gemfile.lock must be up to date

           In development, you can modify your Gemfile(5) and  re-run  bundle  install  to

           conservatively update your Gemfile.lock snapshot. Page 4/9



           In deployment, your Gemfile.lock should be up-to-date with changes made in your

           Gemfile(5).

       3.  Gems are installed to vendor/bundle not your default system location

           In development, it?s convenient to share the gems used in your application with

           other applications and other scripts that run on the system.

           In deployment, isolation is a more important default. In addition, the user de?

           ploying the application may not have permission to install gems to the  system,

           or the web server may not have permission to read them.

           As a result, bundle install --deployment installs gems to the vendor/bundle di?

           rectory in the application. This may be overridden using the --path option.

SUDO USAGE

       By default, Bundler installs gems to the same location as gem install.

       In some cases, that location may not be writable by your Unix user. In  that  case,

       Bundler  will stage everything in a temporary directory, then ask you for your sudo

       password in order to copy the gems into their system location.

       From your perspective, this is identical to installing the gems directly  into  the

       system.

       You  should  never  use sudo bundle install. This is because several other steps in

       bundle install must be performed as the current user:

       ?   Updating your Gemfile.lock

       ?   Updating your vendor/cache, if necessary

       ?   Checking out private git repositories using your user?s SSH keys

       Of these three, the first two could theoretically be performed by chowning the  re?

       sulting  files to $SUDO_USER. The third, however, can only be performed by invoking

       the git command as the current user. Therefore, git gems  are  downloaded  and  in?

       stalled into ~/.bundle rather than $GEM_HOME or $BUNDLE_PATH.

       As  a  result,  you should run bundle install as the current user, and Bundler will

       ask for your password if it is needed to put the gems into their final location.

INSTALLING GROUPS

       By default, bundle install will install all gems in all groups in your  Gemfile(5),

       except those declared for a different platform.

       However, you can explicitly tell Bundler to skip installing certain groups with the

       --without option. This option takes a space-separated list of groups. Page 5/9



       While the --without option will skip installing the gems in the  specified  groups,

       it will still download those gems and use them to resolve the dependencies of every

       gem in your Gemfile(5).

       This is so that installing a different set of groups on another machine (such as  a

       production  server) will not change the gems and versions that you have already de?

       veloped and tested against.

       Bundler offers a rock-solid guarantee that the third-party code you are running  in

       development and testing is also the third-party code you are running in production.

       You can choose to exclude some of that code in different environments, but you will

       never be caught flat-footed by different versions of third-party code being used in

       different environments.

       For a simple illustration, consider the following Gemfile(5):

           source ?https://rubygems.org?

           gem ?sinatra?

           group :production do

             gem ?rack-perftools-profiler?

           end

       In  this  case,  sinatra  depends  on  any  version  of  Rack   (>=   1.0),   while

       rack-perftools-profiler depends on 1.x (~> 1.0).

       When you run bundle install --without production in development, we look at the de?

       pendencies of rack-perftools-profiler as well. That way, you do not spend all  your

       time  developing  against Rack 2.0, using new APIs unavailable in Rack 1.x, only to

       have Bundler switch to Rack 1.2 when the production group is used.

       This should not cause any problems in practice, because we do not  attempt  to  in?

       stall  the gems in the excluded groups, and only evaluate as part of the dependency

       resolution process.

       This also means that you cannot include different versions of the same gem in  dif?

       ferent groups, because doing so would result in different sets of dependencies used

       in development and production. Because of the vagaries of the dependency resolution

       process,  this  usually affects more than the gems you list in your Gemfile(5), and

       can (surprisingly) radically change the gems you are using.

THE GEMFILE.LOCK

       When you run bundle install, Bundler will persist the full names  and  versions  of Page 6/9



       all  gems  that  you used (including dependencies of the gems specified in the Gem?

       file(5)) into a file called Gemfile.lock.

       Bundler uses this file in all subsequent calls to bundle install, which  guarantees

       that  you always use the same exact code, even as your application moves across ma?

       chines.

       Because of the way dependency resolution works, even a seemingly small change  (for

       instance, an update to a point-release of a dependency of a gem in your Gemfile(5))

       can result in radically different gems being needed to satisfy all dependencies.

       As a result, you SHOULD check your Gemfile.lock into version control, in  both  ap?

       plications  and  gems. If you do not, every machine that checks out your repository

       (including your production server) will resolve all dependencies again, which  will

       result  in  different versions of third-party code being used if any of the gems in

       the Gemfile(5) or any of their dependencies have been updated.

       When Bundler first shipped, the Gemfile.lock was included in  the  .gitignore  file

       included  with  generated gems. Over time, however, it became clear that this prac?

       tice forces the pain of broken dependencies onto new  contributors,  while  leaving

       existing  contributors  potentially unaware of the problem. Since bundle install is

       usually the first step towards a contribution,  the  pain  of  broken  dependencies

       would  discourage  new contributors from contributing. As a result, we have revised

       our guidance for gem authors to now recommend checking in the lock for gems.

CONSERVATIVE UPDATING

       When you make a change to the Gemfile(5) and then run bundle install, Bundler  will

       update only the gems that you modified.

       In  other  words,  if a gem that you did not modify worked before you called bundle

       install, it will continue to use the exact same versions of all dependencies as  it

       used before the update.

       Let?s take a look at an example. Here?s your original Gemfile(5):

           source ?https://rubygems.org?

           gem ?actionpack?, ?2.3.8?

           gem ?activemerchant?

       In  this  case, both actionpack and activemerchant depend on activesupport. The ac?

       tionpack gem depends on activesupport 2.3.8 and rack ~> 1.1.0, while the activemer?

       chant  gem  depends  on  activesupport >= 2.3.2, braintree >= 2.0.0, and builder >= Page 7/9



       2.0.0.

       When the dependencies are first resolved, Bundler will select activesupport  2.3.8,

       which satisfies the requirements of both gems in your Gemfile(5).

       Next, you modify your Gemfile(5) to:

           source ?https://rubygems.org?

           gem ?actionpack?, ?3.0.0.rc?

           gem ?activemerchant?

       The  actionpack  3.0.0.rc gem has a number of new dependencies, and updates the ac?

       tivesupport dependency to = 3.0.0.rc and the rack dependency to ~> 1.2.1.

       When you run bundle install, Bundler notices that you changed the  actionpack  gem,

       but  not the activemerchant gem. It evaluates the gems currently being used to sat?

       isfy its requirements:

       activesupport 2.3.8

              also used to satisfy a dependency in activemerchant, which is not being  up?

              dated

       rack ~> 1.1.0

              not currently being used to satisfy another dependency

       Because  you  did not explicitly ask to update activemerchant, you would not expect

       it to suddenly stop working after updating actionpack. However, satisfying the  new

       activesupport 3.0.0.rc dependency of actionpack requires updating one of its depen?

       dencies.

       Even though activemerchant declares a  very  loose  dependency  that  theoretically

       matches  activesupport  3.0.0.rc,  Bundler treats gems in your Gemfile(5) that have

       not changed as an atomic unit together with their dependencies. In this  case,  the

       activemerchant dependency is treated as activemerchant 1.7.1 + activesupport 2.3.8,

       so bundle install will report that it cannot update actionpack.

       To explicitly update actionpack, including its dependencies which other gems in the

       Gemfile(5) still depend on, run bundle update actionpack (see bundle update(1)).

       Summary: In general, after making a change to the Gemfile(5) , you should first try

       to run bundle install, which will guarantee that no other gem in the Gemfile(5)  is

       impacted  by  the  change.  If  that does not work, run bundle update(1) bundle-up?

       date.1.html.

SEE ALSO Page 8/9



       ?   Gem install docs http://guides.rubygems.org/rubygems-basics/#installing-gems

       ?   Rubygems signing docs http://guides.rubygems.org/security/

                                       December 2019                     BUNDLE-INSTALL(1)

Page 9/9


