
Linux Ubuntu 22.4.5 Manual Pages on command 'bundle-update2.7.1'

$ man bundle-update2.7.1

BUNDLE-UPDATE(1) BUNDLE-UPDATE(1)

NAME

 bundle-update - Update your gems to the latest available versions

SYNOPSIS

 bundle update *gems [--all] [--group=NAME] [--source=NAME] [--local] [--ruby]

 [--bundler[=VERSION]] [--full-index] [--jobs=JOBS] [--quiet] [--patch|--minor|--ma?

 jor] [--redownload] [--strict] [--conservative]

DESCRIPTION

 Update the gems specified (all gems, if --all flag is used), ignoring the previ?

 ously installed gems specified in the Gemfile.lock. In general, you should use bun?

 dle install(1) bundle-install.1.html to install the same exact gems and versions

 across machines.

 You would use bundle update to explicitly update the version of a gem.

OPTIONS

 --all Update all gems specified in Gemfile.

 --group=<name>, -g=[<name>]

 Only update the gems in the specified group. For instance, you can update

 all gems in the development group with bundle update --group development.

 You can also call bundle update rails --group test to update the rails gem

 and all gems in the test group, for example.

 --source=<name>

 The name of a :git or :path source used in the Gemfile(5). For instance,
Page 1/8

 with a :git source of http://github.com/rails/rails.git, you would call bun?

 dle update --source rails

 --local

 Do not attempt to fetch gems remotely and use the gem cache instead.

 --ruby Update the locked version of Ruby to the current version of Ruby.

 --bundler

 Update the locked version of bundler to the invoked bundler version.

 --full-index

 Fall back to using the single-file index of all gems.

 --jobs=[<number>], -j[<number>]

 Specify the number of jobs to run in parallel. The default is 1.

 --retry=[<number>]

 Retry failed network or git requests for number times.

 --quiet

 Only output warnings and errors.

 --redownload

 Force downloading every gem.

 --patch

 Prefer updating only to next patch version.

 --minor

 Prefer updating only to next minor version.

 --major

 Prefer updating to next major version (default).

 --strict

 Do not allow any gem to be updated past latest --patch | --minor | --major.

 --conservative

 Use bundle install conservative update behavior and do not allow shared de?

 pendencies to be updated.

UPDATING ALL GEMS

 If you run bundle update --all, bundler will ignore any previously installed gems

 and resolve all dependencies again based on the latest versions of all gems avail?

 able in the sources.

 Consider the following Gemfile(5): Page 2/8

 source "https://rubygems.org"

 gem "rails", "3.0.0.rc"

 gem "nokogiri"

 When you run bundle install(1) bundle-install.1.html the first time, bundler will

 resolve all of the dependencies, all the way down, and install what you need:

 Fetching gem metadata from https://rubygems.org/.........

 Resolving dependencies...

 Installing builder 2.1.2

 Installing abstract 1.0.0

 Installing rack 1.2.8

 Using bundler 1.7.6

 Installing rake 10.4.0

 Installing polyglot 0.3.5

 Installing mime-types 1.25.1

 Installing i18n 0.4.2

 Installing mini_portile 0.6.1

 Installing tzinfo 0.3.42

 Installing rack-mount 0.6.14

 Installing rack-test 0.5.7

 Installing treetop 1.4.15

 Installing thor 0.14.6

 Installing activesupport 3.0.0.rc

 Installing erubis 2.6.6

 Installing activemodel 3.0.0.rc

 Installing arel 0.4.0

 Installing mail 2.2.20

 Installing activeresource 3.0.0.rc

 Installing actionpack 3.0.0.rc

 Installing activerecord 3.0.0.rc

 Installing actionmailer 3.0.0.rc

 Installing railties 3.0.0.rc

 Installing rails 3.0.0.rc

 Installing nokogiri 1.6.5 Page 3/8

 Bundle complete! 2 Gemfile dependencies, 26 gems total.

 Use `bundle show [gemname]` to see where a bundled gem is installed.

 As you can see, even though you have two gems in the Gemfile(5), your application

 needs 26 different gems in order to run. Bundler remembers the exact versions it

 installed in Gemfile.lock. The next time you run bundle install(1) bundle-in?

 stall.1.html, bundler skips the dependency resolution and installs the same gems as

 it installed last time.

 After checking in the Gemfile.lock into version control and cloning it on another

 machine, running bundle install(1) bundle-install.1.html will still install the

 gems that you installed last time. You don?t need to worry that a new release of

 erubis or mail changes the gems you use.

 However, from time to time, you might want to update the gems you are using to the

 newest versions that still match the gems in your Gemfile(5).

 To do this, run bundle update --all, which will ignore the Gemfile.lock, and re?

 solve all the dependencies again. Keep in mind that this process can result in a

 significantly different set of the 25 gems, based on the requirements of new gems

 that the gem authors released since the last time you ran bundle update --all.

UPDATING A LIST OF GEMS

 Sometimes, you want to update a single gem in the Gemfile(5), and leave the rest of

 the gems that you specified locked to the versions in the Gemfile.lock.

 For instance, in the scenario above, imagine that nokogiri releases version 1.4.4,

 and you want to update it without updating Rails and all of its dependencies. To do

 this, run bundle update nokogiri.

 Bundler will update nokogiri and any of its dependencies, but leave alone Rails and

 its dependencies.

OVERLAPPING DEPENDENCIES

 Sometimes, multiple gems declared in your Gemfile(5) are satisfied by the same sec?

 ond-level dependency. For instance, consider the case of thin and

 rack-perftools-profiler.

 source "https://rubygems.org"

 gem "thin"

 gem "rack-perftools-profiler"

 The thin gem depends on rack >= 1.0, while rack-perftools-profiler depends on rack Page 4/8

 ~> 1.0. If you run bundle install, you get:

 Fetching source index for https://rubygems.org/

 Installing daemons (1.1.0)

 Installing eventmachine (0.12.10) with native extensions

 Installing open4 (1.0.1)

 Installing perftools.rb (0.4.7) with native extensions

 Installing rack (1.2.1)

 Installing rack-perftools_profiler (0.0.2)

 Installing thin (1.2.7) with native extensions

 Using bundler (1.0.0.rc.3)

 In this case, the two gems have their own set of dependencies, but they share rack

 in common. If you run bundle update thin, bundler will update daemons, eventmachine

 and rack, which are dependencies of thin, but not open4 or perftools.rb, which are

 dependencies of rack-perftools_profiler. Note that bundle update thin will update

 rack even though it?s also a dependency of rack-perftools_profiler.

 In short, by default, when you update a gem using bundle update, bundler will up?

 date all dependencies of that gem, including those that are also dependencies of

 another gem.

 To prevent updating shared dependencies, prior to version 1.14 the only option was

 the CONSERVATIVE UPDATING behavior in bundle install(1) bundle-install.1.html:

 In this scenario, updating the thin version manually in the Gemfile(5), and then

 running bundle install(1) bundle-install.1.html will only update daemons and event?

 machine, but not rack. For more information, see the CONSERVATIVE UPDATING section

 of bundle install(1) bundle-install.1.html.

 Starting with 1.14, specifying the --conservative option will also prevent shared

 dependencies from being updated.

PATCH LEVEL OPTIONS

 Version 1.14 introduced 4 patch-level options that will influence how gem versions

 are resolved. One of the following options can be used: --patch, --minor or --ma?

 jor. --strict can be added to further influence resolution.

 --patch

 Prefer updating only to next patch version.

 --minor Page 5/8

 Prefer updating only to next minor version.

 --major

 Prefer updating to next major version (default).

 --strict

 Do not allow any gem to be updated past latest --patch | --minor | --major.

 When Bundler is resolving what versions to use to satisfy declared requirements in

 the Gemfile or in parent gems, it looks up all available versions, filters out any

 versions that don?t satisfy the requirement, and then, by default, sorts them from

 newest to oldest, considering them in that order.

 Providing one of the patch level options (e.g. --patch) changes the sort order of

 the satisfying versions, causing Bundler to consider the latest --patch or --minor

 version available before other versions. Note that versions outside the stated

 patch level could still be resolved to if necessary to find a suitable dependency

 graph.

 For example, if gem ?foo? is locked at 1.0.2, with no gem requirement defined in

 the Gemfile, and versions 1.0.3, 1.0.4, 1.1.0, 1.1.1, 2.0.0 all exist, the default

 order of preference by default (--major) will be "2.0.0, 1.1.1, 1.1.0, 1.0.4,

 1.0.3, 1.0.2".

 If the --patch option is used, the order of preference will change to "1.0.4,

 1.0.3, 1.0.2, 1.1.1, 1.1.0, 2.0.0".

 If the --minor option is used, the order of preference will change to "1.1.1,

 1.1.0, 1.0.4, 1.0.3, 1.0.2, 2.0.0".

 Combining the --strict option with any of the patch level options will remove any

 versions beyond the scope of the patch level option, to ensure that no gem is up?

 dated that far.

 To continue the previous example, if both --patch and --strict options are used,

 the available versions for resolution would be "1.0.4, 1.0.3, 1.0.2". If --minor

 and --strict are used, it would be "1.1.1, 1.1.0, 1.0.4, 1.0.3, 1.0.2".

 Gem requirements as defined in the Gemfile will still be the first determining fac?

 tor for what versions are available. If the gem requirement for foo in the Gemfile

 is ?~> 1.0?, that will accomplish the same thing as providing the --minor and

 --strict options.

PATCH LEVEL EXAMPLES Page 6/8

 Given the following gem specifications:

 foo 1.4.3, requires: ~> bar 2.0

 foo 1.4.4, requires: ~> bar 2.0

 foo 1.4.5, requires: ~> bar 2.1

 foo 1.5.0, requires: ~> bar 2.1

 foo 1.5.1, requires: ~> bar 3.0

 bar with versions 2.0.3, 2.0.4, 2.1.0, 2.1.1, 3.0.0

 Gemfile:

 gem ?foo?

 Gemfile.lock:

 foo (1.4.3)

 bar (~> 2.0)

 bar (2.0.3)

 Cases:

 # Command Line Result

 --

 1 bundle update --patch ?foo 1.4.5?, ?bar 2.1.1?

 2 bundle update --patch foo ?foo 1.4.5?, ?bar 2.1.1?

 3 bundle update --minor ?foo 1.5.1?, ?bar 3.0.0?

 4 bundle update --minor --strict ?foo 1.5.0?, ?bar 2.1.1?

 5 bundle update --patch --strict ?foo 1.4.4?, ?bar 2.0.4?

 In case 1, bar is upgraded to 2.1.1, a minor version increase, because the depen?

 dency from foo 1.4.5 required it.

 In case 2, only foo is requested to be unlocked, but bar is also allowed to move

 because it?s not a declared dependency in the Gemfile.

 In case 3, bar goes up a whole major release, because a minor increase is preferred

 now for foo, and when it goes to 1.5.1, it requires 3.0.0 of bar.

 In case 4, foo is preferred up to a minor version, but 1.5.1 won?t work because the

 --strict flag removes bar 3.0.0 from consideration since it?s a major increment.

 In case 5, both foo and bar have any minor or major increments removed from consid?

 eration because of the --strict flag, so the most they can move is up to 1.4.4 and

 2.0.4.

RECOMMENDED WORKFLOW Page 7/8

 In general, when working with an application managed with bundler, you should use

 the following workflow:

 ? After you create your Gemfile(5) for the first time, run

 $ bundle install

 ? Check the resulting Gemfile.lock into version control

 $ git add Gemfile.lock

 ? When checking out this repository on another development machine, run

 $ bundle install

 ? When checking out this repository on a deployment machine, run

 $ bundle install --deployment

 ? After changing the Gemfile(5) to reflect a new or update dependency, run

 $ bundle install

 ? Make sure to check the updated Gemfile.lock into version control

 $ git add Gemfile.lock

 ? If bundle install(1) bundle-install.1.html reports a conflict, manually update

 the specific gems that you changed in the Gemfile(5)

 $ bundle update rails thin

 ? If you want to update all the gems to the latest possible versions that still

 match the gems listed in the Gemfile(5), run

 $ bundle update --all

 December 2019 BUNDLE-UPDATE(1)

Page 8/8

