P cbLrivors:

University

FPDF Library

PDF generator

"‘ pqthon " manutifie

vbuntu

Full credit is given to the above companies including the OS
that this PDF file was generated!

Linux Ubuntu 22.4.5 Manual Pages on command 'bundle-update2.7.1'
$ man bundle-update2.7.1
BUNDLE-UPDATE(1) BUNDLE-UPDATE(1)
NAME
bundle-update - Update your gems to the latest available versions
SYNOPSIS
bundle update *gems [--all] [--group=NAME] [--source=NAME] [--local] [--ruby]
[--bundler[=VERSION]] [--full-index] [--jobs=JOBS] [--quiet] [--patch|--minor|--ma?
jor] [--redownload] [--strict] [--conservative]
DESCRIPTION
Update the gems specified (all gems, if --all flag is used), ignoring the previ?
ously installed gems specified in the Gemfile.lock. In general, you should use bun?
dle install(1) bundle-install.1.html to install the same exact gems and versions
across machines.
You would use bundle update to explicitly update the version of a gem.
OPTIONS
--all Update all gems specified in Gemfile.
--group=<name>, -g=[<name>]
Only update the gems in the specified group. For instance, you can update
all gems in the development group with bundle update --group development.
You can also call bundle update rails --group test to update the rails gem
and all gems in the test group, for example.
--source=<name>

. . ' ) Page 1/8
The name of a :git or :path source used in the Gemfile(5). For instance,



with a :git source of http://github.com/rails/rails.git, you would call bun?
dle update --source rails
--local
Do not attempt to fetch gems remotely and use the gem cache instead.
--ruby Update the locked version of Ruby to the current version of Ruby.
--bundler
Update the locked version of bundler to the invoked bundler version.
--full-index
Fall back to using the single-file index of all gems.
--jobs=[<number>], -j[<number>]
Specify the number of jobs to run in parallel. The default is 1.
--retry=[<number>]
Retry failed network or git requests for number times.
--quiet
Only output warnings and errors.
--redownload
Force downloading every gem.
--patch
Prefer updating only to next patch version.
--minor
Prefer updating only to next minor version.
--major
Prefer updating to next major version (default).
--strict
Do not allow any gem to be updated past latest --patch | --minor | --major.
--conservative
Use bundle install conservative update behavior and do not allow shared de?
pendencies to be updated.
UPDATING ALL GEMS
If you run bundle update --all, bundler will ignore any previously installed gems
and resolve all dependencies again based on the latest versions of all gems avail?
able in the sources.

Consider the following Gemfile(5): Page 2/8



source "https://rubygems.org"
gem "rails", "3.0.0.rc"
gem "nokogiri"
When you run bundle install(1) bundle-install.1.html the first time, bundler will
resolve all of the dependencies, all the way down, and install what you need:
Fetching gem metadata from https://rubygems.org/.........
Resolving dependencies...
Installing builder 2.1.2
Installing abstract 1.0.0
Installing rack 1.2.8
Using bundler 1.7.6
Installing rake 10.4.0
Installing polyglot 0.3.5
Installing mime-types 1.25.1
Installing i18n 0.4.2
Installing mini_portile 0.6.1
Installing tzinfo 0.3.42
Installing rack-mount 0.6.14
Installing rack-test 0.5.7
Installing treetop 1.4.15
Installing thor 0.14.6
Installing activesupport 3.0.0.rc
Installing erubis 2.6.6
Installing activemodel 3.0.0.rc
Installing arel 0.4.0
Installing mail 2.2.20
Installing activeresource 3.0.0.rc
Installing actionpack 3.0.0.rc
Installing activerecord 3.0.0.rc
Installing actionmailer 3.0.0.rc
Installing railties 3.0.0.rc
Installing rails 3.0.0.rc

Installing nokogiri 1.6.5 Page 3/8



Bundle complete! 2 Gemfile dependencies, 26 gems total.
Use "bundle show [gemname] to see where a bundled gem is installed.
As you can see, even though you have two gems in the Gemfile(5), your application
needs 26 different gems in order to run. Bundler remembers the exact versions it
installed in Gemfile.lock. The next time you run bundle install(1) bundle-in?
stall.1.html, bundler skips the dependency resolution and installs the same gems as
it installed last time.
After checking in the Gemfile.lock into version control and cloning it on another
machine, running bundle install(1) bundle-install.1.html will still install the
gems that you installed last time. You don?t need to worry that a new release of
erubis or mail changes the gems you use.
However, from time to time, you might want to update the gems you are using to the
newest versions that still match the gems in your Gemfile(5).
To do this, run bundle update --all, which will ignore the Gemfile.lock, and re?
solve all the dependencies again. Keep in mind that this process can result in a
significantly different set of the 25 gems, based on the requirements of new gems
that the gem authors released since the last time you ran bundle update --all.
UPDATING A LIST OF GEMS
Sometimes, you want to update a single gem in the Gemfile(5), and leave the rest of
the gems that you specified locked to the versions in the Gemfile.lock.
For instance, in the scenario above, imagine that nokogiri releases version 1.4.4,
and you want to update it without updating Rails and all of its dependencies. To do
this, run bundle update nokogiri.
Bundler will update nokogiri and any of its dependencies, but leave alone Rails and
its dependencies.
OVERLAPPING DEPENDENCIES
Sometimes, multiple gems declared in your Gemfile(5) are satisfied by the same sec?
ond-level dependency. For instance, consider the case of thin and
rack-perftools-profiler.
source "https://rubygems.org"
gem "thin"
gem "rack-perftools-profiler"

The thin gem depends on rack >= 1.0, while rack-perftools-profiler depends on rack Page 4/8



~>1.0. If you run bundle install, you get:

Fetching source index for https://rubygems.org/

Installing daemons (1.1.0)

Installing eventmachine (0.12.10) with native extensions

Installing open4 (1.0.1)

Installing perftools.rb (0.4.7) with native extensions

Installing rack (1.2.1)

Installing rack-perftools_profiler (0.0.2)

Installing thin (1.2.7) with native extensions

Using bundler (1.0.0.rc.3)
In this case, the two gems have their own set of dependencies, but they share rack
in common. If you run bundle update thin, bundler will update daemons, eventmachine
and rack, which are dependencies of thin, but not open4 or perftools.rb, which are
dependencies of rack-perftools_profiler. Note that bundle update thin will update
rack even though it?s also a dependency of rack-perftools_profiler.
In short, by default, when you update a gem using bundle update, bundler will up?
date all dependencies of that gem, including those that are also dependencies of
another gem.
To prevent updating shared dependencies, prior to version 1.14 the only option was
the CONSERVATIVE UPDATING behavior in bundle install(1) bundle-install.1.html:
In this scenario, updating the thin version manually in the Gemfile(5), and then
running bundle install(1) bundle-install.1.html will only update daemons and event?
machine, but not rack. For more information, see the CONSERVATIVE UPDATING section
of bundle install(1) bundle-install.1.html.
Starting with 1.14, specifying the --conservative option will also prevent shared
dependencies from being updated.

PATCH LEVEL OPTIONS

Version 1.14 introduced 4 patch-level options that will influence how gem versions
are resolved. One of the following options can be used: --patch, --minor or --ma?
jor. --strict can be added to further influence resolution.
--patch

Prefer updating only to next patch version.

--minor Page 5/8



Prefer updating only to next minor version.
--major

Prefer updating to next major version (default).
--strict

Do not allow any gem to be updated past latest --patch | --minor | --major.
When Bundler is resolving what versions to use to satisfy declared requirements in
the Gemfile or in parent gems, it looks up all available versions, filters out any
versions that don?t satisfy the requirement, and then, by default, sorts them from
newest to oldest, considering them in that order.
Providing one of the patch level options (e.g. --patch) changes the sort order of
the satisfying versions, causing Bundler to consider the latest --patch or --minor
version available before other versions. Note that versions outside the stated
patch level could still be resolved to if necessary to find a suitable dependency
graph.
For example, if gem ?foo? is locked at 1.0.2, with no gem requirement defined in
the Gemfile, and versions 1.0.3, 1.0.4, 1.1.0, 1.1.1, 2.0.0 all exist, the default
order of preference by default (--major) will be "2.0.0, 1.1.1, 1.1.0, 1.0.4,
1.0.3,1.0.2".
If the --patch option is used, the order of preference will change to "1.0.4,
1.03,1.0.2,1.1.1,1.1.0, 2.0.0".
If the --minor option is used, the order of preference will change to "1.1.1,
1.1.0,1.0.4,1.0.3,1.0.2, 2.0.0".
Combining the --strict option with any of the patch level options will remove any
versions beyond the scope of the patch level option, to ensure that no gem is up?
dated that far.
To continue the previous example, if both --patch and --strict options are used,
the available versions for resolution would be "1.0.4, 1.0.3, 1.0.2". If --minor
and --strict are used, it would be "1.1.1, 1.1.0, 1.0.4, 1.0.3, 1.0.2".
Gem requirements as defined in the Gemfile will still be the first determining fac?
tor for what versions are available. If the gem requirement for foo in the Gemfile
is ?~> 1.07?, that will accomplish the same thing as providing the --minor and
--strict options.

PATCH LEVEL EXAMPLES Page 6/8



Given the following gem specifications:

foo 1.4.3, requires:
foo 1.4.4, requires:
foo 1.4.5, requires:
foo 1.5.0, requires:
foo 1.5.1, requires:

bar with versions 2.0.3, 2.0.4, 2.1.0, 2.1.1, 3.0.0

Gemfile:
gem ?foo?
Gemfile.lock:
foo (1.4.3)
bar (~>2.0)
bar (2.0.3)
Cases:

# Command Line

~> bar 2.0

~> bar 2.0

~> bar 2.1

~>bar 2.1

~> bar 3.0

Result

1 bundle update --patch

2 bundle update --patch foo

3 bundle update --minor

4 bundle update --minor --strict ?foo 1.5.0?, ?bar 2.1.1?
5 bundle update --patch --strict ?foo 1.4.47?, ?bar 2.0.4?

In case 1, baris upgraded to 2.1.1, a minor version increase, because the depen?

dency from foo 1.4.5 required it.

In case 2, only foo is requested to be unlocked, but bar is also allowed to move
because it?s not a declared dependency in the Gemfile.

In case 3, bar goes up a whole major release, because a minor increase is preferred
now for foo, and when it goes to 1.5.1, it requires 3.0.0 of bar.

In case 4, foo is preferred up to a minor version, but 1.5.1 won?t work because the
--strict flag removes bar 3.0.0 from consideration since it?s a major increment.

In case 5, both foo and bar have any minor or major increments removed from consid?

eration because of the --strict flag, so the most they can move is up to 1.4.4 and

2.0.4.

RECOMMENDED WORKFLOW

?foo 1.4.5?, ?bar 2.1.1?
?foo 1.4.5?, ?bar 2.1.17?

?foo 1.5.1?, ?bar 3.0.0?

Page 7/8



In general, when working with an application managed with bundler, you should use
the following workflow:
? After you create your Gemfile(5) for the first time, run
$ bundle install
? Check the resulting Gemfile.lock into version control
$ git add Gemfile.lock
? When checking out this repository on another development machine, run
$ bundle install
? When checking out this repository on a deployment machine, run
$ bundle install --deployment
? After changing the Gemfile(5) to reflect a new or update dependency, run
$ bundle install
? Make sure to check the updated Gemfile.lock into version control
$ git add Gemfile.lock
? If bundle install(1) bundle-install.1.html reports a conflict, manually update
the specific gems that you changed in the Gemfile(5)
$ bundle update rails thin
? If you want to update all the gems to the latest possible versions that still
match the gems listed in the Gemfile(5), run
$ bundle update --all

December 2019 BUNDLE-UPDATE(1)

Page 8/8



