FPDF Library

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'cfmakeraw.3'

$ man cfmakeraw.3

TERMIOS(3) Linux Programmer's Manual

NAME

TERMIOS(3)

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw, cfge?

tospeed, cfgetispeed, cfsetispeed, cfsetospeed, cfsetspeed - get and set terminal at?

tributes, line control, get and set baud rate

SYNOPSIS

#include <termios.h>
#include <unistd.h>
int tcgetattr(int fd, struct termios *termios_p);
int tcsetattr(int fd, int optional_actions,
const struct termios *termios_p);
int tcsendbreak(int fd, int duration);
int tcdrain(int fd);
int tcflush(int fd, int queue_selector);
int tcflow(int fd, int action);
void cfmakeraw(struct termios *termios_p);
speed_t cfgetispeed(const struct termios *termios_p);
speed_t cfgetospeed(const struct termios *termios_p);
int cfsetispeed(struct termios *termios_p, speed_t speed);
int cfsetospeed(struct termios *termios_p, speed_t speed);

int cfsetspeed(struct termios *termios_p, speed_t speed);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cfsetspeed(), cfmakeraw():

Page 1/14

Since glibc 2.19:
_DEFAULT_SOURCE
Glibc 2.19 and earlier:
_BSD_SOURCE
DESCRIPTION
The termios functions describe a general terminal interface that is provided to control
asynchronous communications ports.
The termios structure

Many of the functions described here have a termios_p argument that is a pointer to a

termios structure. This structure contains at least the following members:

tcflag_tc _iflag; /* input modes */

tcflag_t c_oflag; /* output modes */
tcflag_tc_cflag; /* control modes */
tcflag_tc Iflag; /* local modes */

cc_t c_cc[NCCS]; [*special characters */

The values that may be assigned to these fields are described below. In the case of the

first four bit-mask fields, the definitions of some of the associated flags that may be

set are exposed only if a specific feature test macro (see feature_test_macros(7)) is de?

fined, as noted in brackets ("[]").

In the descriptions below, "not in POSIX" means that the value is not specified in

POSIX.1-2001, and "XSI" means that the value is specified in POSIX.1-2001 as part of the

XSI extension.

c_iflag flag constants:

IGNBRK Ignore BREAK condition on input.

BRKINT If IGNBRK is set, a BREAK is ignored. If it is not set but BRKINT is set, then a
BREAK causes the input and output queues to be flushed, and if the terminal is the
controlling terminal of a foreground process group, it will cause a SIGINT to be
sent to this foreground process group. When neither IGNBRK nor BRKINT are set, a
BREAK reads as a null byte (\0"), except when PARMRK is set, in which case it
reads as the sequence \377 \0 \0.

IGNPAR Ignore framing errors and parity errors.

PARMRK If this bit is set, input bytes with parity or framing errors are marked when

passed to the program. This bit is meaningful only when INPCK is set and IGNPAR is Page 2/14

not set. The way erroneous bytes are marked is with two preceding bytes, \377 and
\0. Thus, the program actually reads three bytes for one erroneous byte received
from the terminal. If a valid byte has the value \377, and ISTRIP (see below) is
not set, the program might confuse it with the prefix that marks a parity error.
Therefore, a valid byte \377 is passed to the program as two bytes, \377 \377, in
this case.
If neither IGNPAR nor PARMRK is set, read a character with a parity error or fram?
ing error as \0.

INPCK Enable input parity checking.

ISTRIP Strip off eighth bit.

INLCR Translate NL to CR on input.

IGNCR Ignore carriage return on input.

ICRNL Translate carriage return to newline on input (unless IGNCR is set).

IUCLC (not in POSIX) Map uppercase characters to lowercase on input.

IXON Enable XON/XOFF flow control on output.

IXANY (XSI) Typing any character will restart stopped output. (The default is to allow
just the START character to restart output.)

IXOFF Enable XON/XOFF flow control on input.

IMAXBEL
(not in POSIX) Ring bell when input queue is full. Linux does not implement this
bit, and acts as if it is always set.

IUTF8 (since Linux 2.6.4)
(not in POSIX) Input is UTFS8; this allows character-erase to be correctly performed
in cooked mode.

c_oflag flag constants:

OPOST Enable implementation-defined output processing.

OLCUC (notin POSIX) Map lowercase characters to uppercase on output.

ONLCR (XSI) Map NL to CR-NL on output.

OCRNL Map CR to NL on output.

ONOCR Don't output CR at column 0.

ONLRET Don't output CR.

OFILL Send fill characters for a delay, rather than using a timed delay.

OFDEL Fill character is ASCII DEL (0177). If unset, fill character is ASCII NUL (\0). Page 3/14

(Not implemented on Linux.)

NLDLY Newline delay mask. Values are NLO and NL1. [requires BSD SOURCE or SVID_SOURCE
or _XOPEN_SOURCE]

CRDLY Carriage return delay mask. Values are CRO, CR1, CR2, or CR3. [requires
_BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

TABDLY Horizontal tab delay mask. Values are TABO, TAB1, TAB2, TAB3 (or XTABS, but see
the BUGS section). A value of TAB3, that is, XTABS, expands tabs to spaces (with
tab stops every eight columns). [requires _BSD_SOURCE or _SVID_SOURCE or
_XOPEN_SOURCE]

BSDLY Backspace delay mask. Values are BSO or BS1. (Has never been implemented.) [re?
quires _BSD_SOURCE or _SVID_SOURCE or XOPEN_SOURCE]

VTDLY Vertical tab delay mask. Values are VTO or VT1.

FFDLY Form feed delay mask. Values are FFO or FF1. [requires BSD SOURCE or
_SVID_SOURCE or _XOPEN_SOURCE]

c_cflag flag constants:

CBAUD (not in POSIX) Baud speed mask (4+1 bits). [requires BSD_SOURCE or _SVID_SOURCE]

CBAUDEX
(not in POSIX) Extra baud speed mask (1 bit), included in CBAUD. [requires
_BSD_SOURCE or _SVID_SOURCE]
(POSIX says that the baud speed is stored in the termios structure without specify?
ing where precisely, and provides cfgetispeed() and cfsetispeed() for getting at
it. Some systems use bits selected by CBAUD in c_cflag, other systems use separate
fields, for example, sg_ispeed and sg_ospeed.)

CSIZE Character size mask. Values are CS5, CS6, CS7, or CS8.

CSTOPB Set two stop bits, rather than one.

CREAD Enable receiver.

PARENB Enable parity generation on output and parity checking for input.

PARODD If set, then parity for input and output is odd; otherwise even parity is used.

HUPCL Lower modem control lines after last process closes the device (hang up).

CLOCAL Ignore modem control lines.

LOBLK (not in POSIX) Block output from a noncurrent shell layer. For use by shl (shell
layers). (Not implemented on Linux.)

CIBAUD (not in POSIX) Mask for input speeds. The values for the CIBAUD bits are the same Page 4/14

as the values for the CBAUD bits, shifted left IBSHIFT bits. [requires _BSD_ SOURCE
or _SVID_SOURCE] (Not implemented on Linux.)

CMSPAR (not in POSIX) Use "stick" (mark/space) parity (supported on certain serial de?
vices): if PARODD is set, the parity bit is always 1; if PARODD is not set, then
the parity bit is always 0. [requires _BSD_SOURCE or _SVID_SOURCE]

CRTSCTS
(not in POSIX) Enable RTS/CTS (hardware) flow control. [requires _BSD_SOURCE or
_SVID_SOURCE]

c_lflag flag constants:

ISIG When any of the characters INTR, QUIT, SUSP, or DSUSP are received, generate the
corresponding signal.

ICANON Enable canonical mode (described below).

XCASE (not in POSIX; not supported under Linux) If ICANON is also set, terminal is upper?
case only. Inputis converted to lowercase, except for characters preceded by \.
On output, uppercase characters are preceded by \ and lowercase characters are con?
verted to uppercase. [requires BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

ECHO Echo input characters.

ECHOE If ICANON is also set, the ERASE character erases the preceding input character,
and WERASE erases the preceding word.

ECHOK If ICANON is also set, the KILL character erases the current line.

ECHONL If ICANON is also set, echo the NL character even if ECHO is not set.

ECHOCTL
(not in POSIX) If ECHO is also set, terminal special characters other than TAB, NL,
START, and STOP are echoed as "X, where X is the character with ASCIl code 0x40
greater than the special character. For example, character 0x08 (BS) is echoed as
AH. [requires _BSD_SOURCE or _SVID_SOURCE]

ECHOPRT
(not in POSIX) If ICANON and ECHO are also set, characters are printed as they are
being erased. [requires BSD_SOURCE or _SVID_SOURCE]

ECHOKE (not in POSIX) If ICANON is also set, KILL is echoed by erasing each character on
the line, as specified by ECHOE and ECHOPRT. [requires _BSD SOURCE or
_SVID_SOURCE]

DEFECHO Page 5/14

(not in POSIX) Echo only when a process is reading. (Not implemented on Linux.)

FLUSHO (not in POSIX; not supported under Linux) Output is being flushed. This flag is
toggled by typing the DISCARD character. [requires BSD_SOURCE or _SVID_SOURCE]

NOFLSH Disable flushing the input and output queues when generating signals for the INT,
QUIT, and SUSP characters.

TOSTOP Send the SIGTTOU signal to the process group of a background process which tries to
write to its controlling terminal.

PENDIN (not in POSIX; not supported under Linux) All characters in the input queue are re?
printed when the next character is read. (bash(1) handles typeahead this way.)
[requires _BSD_ SOURCE or _SVID_SOURCE]

IEXTEN Enable implementation-defined input processing. This flag, as well as ICANON must
be enabled for the special characters EOL2, LNEXT, REPRINT, WERASE to be inter?
preted, and for the IUCLC flag to be effective.

The c_cc array defines the terminal special characters. The symbolic indices (initial

values) and meaning are:

VDISCARD
(not in POSIX; not supported under Linux; 017, Sl, Ctrl-O) Toggle: start/stop dis?
carding pending output. Recognized when IEXTEN is set, and then not passed as in?
put.

VDSUSP (not in POSIX; not supported under Linux; 031, EM, Ctrl-Y) Delayed suspend charac?
ter (DSUSP): send SIGTSTP signal when the character is read by the user program.
Recognized when IEXTEN and ISIG are set, and the system supports job control, and
then not passed as input.

VEOF (004, EOT, Ctrl-D) End-of-file character (EOF). More precisely: this character
causes the pending tty buffer to be sent to the waiting user program without wait?
ing for end-of-line. If it is the first character of the line, the read(2) in the
user program returns 0, which signifies end-of-file. Recognized when ICANON is
set, and then not passed as input.

VEOL (0, NUL) Additional end-of-line character (EOL). Recognized when ICANON is set.

VEOL2 (notin POSIX; 0, NUL) Yet another end-of-line character (EOL2). Recognized when
ICANON is set.

VERASE (0177, DEL, rubout, or 010, BS, Ctrl-H, or also #) Erase character (ERASE). This

erases the previous not-yet-erased character, but does not erase past EOF or begin? Page 6/14

ning-of-line. Recognized when ICANON is set, and then not passed as input.

VINTR (003, ETX, Ctrl-C, or also 0177, DEL, rubout) Interrupt character (INTR). Send a
SIGINT signal. Recognized when ISIG is set, and then not passed as input.

VKILL (025, NAK, Ctrl-U, or Ctrl-X, or also @) Kill character (KILL). This erases the
input since the last EOF or beginning-of-line. Recognized when ICANON is set, and
then not passed as input.

VLNEXT (not in POSIX; 026, SYN, Ctrl-V) Literal next (LNEXT). Quotes the next input char?
acter, depriving it of a possible special meaning. Recognized when IEXTEN is set,
and then not passed as input.

VMIN Minimum number of characters for noncanonical read (MIN).

VQUIT (034, FS, Ctrl-\) Quit character (QUIT). Send SIGQUIT signal. Recognized when
ISIG is set, and then not passed as input.

VREPRINT
(not in POSIX; 022, DC2, Ctrl-R) Reprint unread characters (REPRINT). Recognized
when ICANON and IEXTEN are set, and then not passed as input.

VSTART (021, DC1, Ctrl-Q) Start character (START). Restarts output stopped by the Stop
character. Recognized when IXON is set, and then not passed as input.

VSTATUS
(not in POSIX; not supported under Linux; status request: 024, DC4, Ctrl-T). Sta?
tus character (STATUS). Display status information at terminal, including state of
foreground process and amount of CPU time it has consumed. Also sends a SIGINFO
signal (not supported on Linux) to the foreground process group.

VSTOP (023, DC3, Ctrl-S) Stop character (STOP). Stop output until Start character typed.
Recognized when IXON is set, and then not passed as input.

VSUSP (032, SUB, Ctrl-Z) Suspend character (SUSP). Send SIGTSTP signal. Recognized when
ISIG is set, and then not passed as input.

VSWTCH (not in POSIX; not supported under Linux; 0, NUL) Switch character (SWTCH). Used
in System V to switch shells in shell layers, a predecessor to shell job control.

VTIME Timeout in deciseconds for noncanonical read (TIME).

VWERASE
(not in POSIX; 027, ETB, Ctrl-W) Word erase (WERASE). Recognized when ICANON and
IEXTEN are set, and then not passed as input.

An individual terminal special character can be disabled by setting the value of the cor? Page 7/14

responding c_cc element to _POSIX_VDISABLE.
The above symbolic subscript values are all different, except that VTIME, VMIN may have
the same value as VEOL, VEOF, respectively. In noncanonical mode the special character
meaning is replaced by the timeout meaning. For an explanation of VMIN and VTIME, see the
description of noncanonical mode below.
Retrieving and changing terminal settings
tcgetattr() gets the parameters associated with the object referred by fd and stores them
in the termios structure referenced by termios_p. This function may be invoked from a
background process; however, the terminal attributes may be subsequently changed by a
foreground process.
tcsetattr() sets the parameters associated with the terminal (unless support is required
from the underlying hardware that is not available) from the termios structure referred to
by termios_p. optional_actions specifies when the changes take effect:
TCSANOW
the change occurs immediately.
TCSADRAIN
the change occurs after all output written to fd has been transmitted. This option
should be used when changing parameters that affect output.
TCSAFLUSH
the change occurs after all output written to the object referred by fd has been
transmitted, and all input that has been received but not read will be discarded
before the change is made.
Canonical and noncanonical mode
The setting of the ICANON canon flag in c_lIflag determines whether the terminal is operat?
ing in canonical mode (ICANON set) or noncanonical mode (ICANON unset). By default,
ICANON is set.
In canonical mode:
* Input is made available line by line. An input line is available when one of the line
delimiters is typed (NL, EOL, EOL2; or EOF at the start of line). Except in the case of
EOF, the line delimiter is included in the buffer returned by read(2).
* Line editing is enabled (ERASE, KILL; and if the IEXTEN flag is set: WERASE, REPRINT,
LNEXT). A read(2) returns at most one line of input; if the read(2) requested fewer

bytes than are available in the current line of input, then only as many bytes as re? Page 8/14

guested are read, and the remaining characters will be available for a future read(2).

* The maximum line length is 4096 chars (including the terminating newline character);
lines longer than 4096 chars are truncated. After 4095 characters, input processing
(e.g., ISIG and ECHO* processing) continues, but any input data after 4095 characters up
to (but not including) any terminating newline is discarded. This ensures that the ter?
minal can always receive more input until at least one line can be read.

In noncanonical mode input is available immediately (without the user having to type a

line-delimiter character), no input processing is performed, and line editing is disabled.

The read buffer will only accept 4095 chars; this provides the necessary space for a new?

line char if the input mode is switched to canonical. The settings of MIN (c_cc[VMIN])

and TIME (c_cc[VTIME]) determine the circumstances in which a read(2) completes; there are

four distinct cases:

MIN == 0, TIME == 0 (polling read)

If data is available, read(2) returns immediately, with the lesser of the number of
bytes available, or the number of bytes requested. If no data is available,
read(2) returns 0.

MIN > 0, TIME == 0 (blocking read)

read(2) blocks until MIN bytes are available, and returns up to the number of bytes
requested.

MIN == 0, TIME > 0 (read with timeout)

TIME specifies the limit for a timer in tenths of a second. The timer is started
when read(2) is called. read(2) returns either when at least one byte of data is
available, or when the timer expires. If the timer expires without any input be?
coming available, read(2) returns 0. If data is already available at the time of

the call to read(2), the call behaves as though the data was received immediately
after the call.

MIN > 0, TIME > 0 (read with interbyte timeout)

TIME specifies the limit for a timer in tenths of a second. Once an initial byte
of input becomes available, the timer is restarted after each further byte is re?
ceived. read(2) returns when any of the following conditions is met:

* MIN bytes have been received.

* The interbyte timer expires.

* The number of bytes requested by read(2) has been received. (POSIX does not Page 9/14

specify this termination condition, and on some other implementations read(2)
does not return in this case.)
Because the timer is started only after the initial byte becomes available, at
least one byte will be read. If data is already available at the time of the call
to read(2), the call behaves as though the data was received immediately after the
call.
POSIX does not specify whether the setting of the O_NONBLOCK file status flag takes prece?
dence over the MIN and TIME settings. If O_NONBLOCK is set, a read(2) in noncanonical
mode may return immediately, regardless of the setting of MIN or TIME. Furthermore, if no
data is available, POSIX permits a read(2) in noncanonical mode to return either 0, or -1
with errno set to EAGAIN.
Raw mode
cfmakeraw() sets the terminal to something like the "raw" mode of the old Version 7 termi?
nal driver: input is available character by character, echoing is disabled, and all spe?
cial processing of terminal input and output characters is disabled. The terminal at?
tributes are set as follows:
termios_p->c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP
| INLCR | IGNCR | ICRNL | IXON);
termios_p->c_oflag &= ~OPOST;
termios_p->c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
termios_p->c_cflag &= ~(CSIZE | PARENB);
termios_p->c_cflag |= CS8;
Line control
tcsendbreak() transmits a continuous stream of zero-valued bits for a specific duration,
if the terminal is using asynchronous serial data transmission. If duration is zero, it
transmits zero-valued bits for at least 0.25 seconds, and not more than 0.5 seconds. If
duration is not zero, it sends zero-valued bits for some implementation-defined length of
time.
If the terminal is not using asynchronous serial data transmission, tcsendbreak() returns
without taking any action.
tcdrain() waits until all output written to the object referred to by fd has been trans?
mitted.

tcflush() discards data written to the object referred to by fd but not transmitted, or Page 10/14

data received but not read, depending on the value of queue_selector:
TCIFLUSH
flushes data received but not read.
TCOFLUSH
flushes data written but not transmitted.
TCIOFLUSH
flushes both data received but not read, and data written but not transmitted.
tcflow() suspends transmission or reception of data on the object referred to by fd, de?
pending on the value of action:
TCOOFF suspends output.
TCOON restarts suspended output.
TCIOFF transmits a STOP character, which stops the terminal device from transmitting data
to the system.
TCION transmits a START character, which starts the terminal device transmitting data to
the system.
The default on open of a terminal file is that neither its input nor its output is sus?
pended.
Line speed
The baud rate functions are provided for getting and setting the values of the input and
output baud rates in the termios structure. The new values do not take effect until tcse?
tattr() is successfully called.
Setting the speed to BO instructs the modem to "hang up". The actual bit rate correspond?
ing to B38400 may be altered with setserial(8).
The input and output baud rates are stored in the termios structure.
cfgetospeed() returns the output baud rate stored in the termios structure pointed to by
termios_p.
cfsetospeed() sets the output baud rate stored in the termios structure pointed to by
termios_p to speed, which must be one of these constants:
BO
B50
B75
B110

B134 Page 11/14

B150

B200

B300

B600

B1200

B1800

B2400

B4800

B9600

B19200

B38400

B57600

B115200

B230400
The zero baud rate, BO, is used to terminate the connection. If BO is specified, the mo?
dem control lines shall no longer be asserted. Normally, this will disconnect the line.
CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600 and above). Thus,
B57600 & CBAUDEX is nonzero.
cfgetispeed() returns the input baud rate stored in the termios structure.
cfsetispeed() sets the input baud rate stored in the termios structure to speed, which
must be specified as one of the Bnnn constants listed above for cfsetospeed(). If the in?
put baud rate is set to zero, the input baud rate will be equal to the output baud rate.
cfsetspeed() is a 4.4BSD extension. It takes the same arguments as cfsetispeed(), and
sets both input and output speed.

RETURN VALUE

cfgetispeed() returns the input baud rate stored in the termios structure.
cfgetospeed() returns the output baud rate stored in the termios structure.
All other functions return:
0 on success.
-1 on failure and set errno to indicate the error.
Note that tcsetattr() returns success if any of the requested changes could be success?
fully carried out. Therefore, when making multiple changes it may be necessary to follow

this call with a further call to tcgetattr() to check that all changes have been performed Page 12/14

successfully.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PP ?2??7?7???7?77?727?7?72??7?7?7?7??7?7??7?77?7?7

?Interface ? Attribute

PP 7?7??7??77?277?72??7?7?7?7??7?7??7?77?7?7

?tcgetattr(), tesetattr(), tedrain(), ? Thread safety ? MT-Safe ?

?tcflush(), tcflow(), tcsendbreak(), ?

?cfmakeraw(), cfgetispeed(),
?cfgetospeed(), cfsetispeed(),

?cfsetospeed(), cfsetspeed()

PPV 7?7??7?7?77?7?77????7?7?7?7??7?7??7?77?7?7?

CONFORMING TO

tcgetattr(), tcsetattr(), tcsendbreak(), tcdrain(), tcflush(), tcflow(), cfgetispeedo(),
cfgetospeed(), cfsetispeed(), and cfsetospeed() are specified in POSIX.1-2001.

cfmakeraw() and cfsetspeed() are nonstandard, but available on the BSDs.

NOTES

UNIX V7 and several later systems have a list of baud rates where after the fourteen val?

ues BO, ..., B9600 one finds the two constants EXTA, EXTB ("External A" and "External B").
Many systems extend the list with much higher baud rates.

The effect of a nonzero duration with tcsendbreak() varies. SunOS specifies a break of
duration * N seconds, where N is at least 0.25, and not more than 0.5. Linux, AlX, DU,

Tru64 send a break of duration milliseconds. FreeBSD and NetBSD and HP-UX and MacOS ig?

nore the value of duration. Under Solaris and UnixWare, tcsendbreak() with nonzero dura?

tion behaves like tcdrain().

BUGS

On the Alpha architecture before Linux 4.16 (and glibc before 2.28), the XTABS value was
different from TAB3 and it was ignored by the N_TTY line discipline code of the terminal

driver as a result (because as it wasn't part of the TABDLY mask).

SEE ALSO

reset(1), setterm(1), stty(1), tput(1), tset(1), tty(1), ioctl_console(2), ioctl_tty(2),

setserial(8)

COLOPHON

?

?

?

? Value ?

?

?

?

?

?

?

?

?

Page 13/14

This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 TERMIOS(3)

Page 14/14

