
Rocky Enterprise Linux 9.2 Manual Pages on command 'cfsetspeed.3'

$ man cfsetspeed.3

TERMIOS(3) Linux Programmer's Manual TERMIOS(3)

NAME

 termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw, cfge?

 tospeed, cfgetispeed, cfsetispeed, cfsetospeed, cfsetspeed - get and set terminal at?

 tributes, line control, get and set baud rate

SYNOPSIS

 #include <termios.h>

 #include <unistd.h>

 int tcgetattr(int fd, struct termios *termios_p);

 int tcsetattr(int fd, int optional_actions,

 const struct termios *termios_p);

 int tcsendbreak(int fd, int duration);

 int tcdrain(int fd);

 int tcflush(int fd, int queue_selector);

 int tcflow(int fd, int action);

 void cfmakeraw(struct termios *termios_p);

 speed_t cfgetispeed(const struct termios *termios_p);

 speed_t cfgetospeed(const struct termios *termios_p);

 int cfsetispeed(struct termios *termios_p, speed_t speed);

 int cfsetospeed(struct termios *termios_p, speed_t speed);

 int cfsetspeed(struct termios *termios_p, speed_t speed);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 cfsetspeed(), cfmakeraw(): Page 1/14

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc 2.19 and earlier:

 _BSD_SOURCE

DESCRIPTION

 The termios functions describe a general terminal interface that is provided to control

 asynchronous communications ports.

 The termios structure

 Many of the functions described here have a termios_p argument that is a pointer to a

 termios structure. This structure contains at least the following members:

 tcflag_t c_iflag; /* input modes */

 tcflag_t c_oflag; /* output modes */

 tcflag_t c_cflag; /* control modes */

 tcflag_t c_lflag; /* local modes */

 cc_t c_cc[NCCS]; /* special characters */

 The values that may be assigned to these fields are described below. In the case of the

 first four bit-mask fields, the definitions of some of the associated flags that may be

 set are exposed only if a specific feature test macro (see feature_test_macros(7)) is de?

 fined, as noted in brackets ("[]").

 In the descriptions below, "not in POSIX" means that the value is not specified in

 POSIX.1-2001, and "XSI" means that the value is specified in POSIX.1-2001 as part of the

 XSI extension.

 c_iflag flag constants:

 IGNBRK Ignore BREAK condition on input.

 BRKINT If IGNBRK is set, a BREAK is ignored. If it is not set but BRKINT is set, then a

 BREAK causes the input and output queues to be flushed, and if the terminal is the

 controlling terminal of a foreground process group, it will cause a SIGINT to be

 sent to this foreground process group. When neither IGNBRK nor BRKINT are set, a

 BREAK reads as a null byte ('\0'), except when PARMRK is set, in which case it

 reads as the sequence \377 \0 \0.

 IGNPAR Ignore framing errors and parity errors.

 PARMRK If this bit is set, input bytes with parity or framing errors are marked when

 passed to the program. This bit is meaningful only when INPCK is set and IGNPAR is Page 2/14

 not set. The way erroneous bytes are marked is with two preceding bytes, \377 and

 \0. Thus, the program actually reads three bytes for one erroneous byte received

 from the terminal. If a valid byte has the value \377, and ISTRIP (see below) is

 not set, the program might confuse it with the prefix that marks a parity error.

 Therefore, a valid byte \377 is passed to the program as two bytes, \377 \377, in

 this case.

 If neither IGNPAR nor PARMRK is set, read a character with a parity error or fram?

 ing error as \0.

 INPCK Enable input parity checking.

 ISTRIP Strip off eighth bit.

 INLCR Translate NL to CR on input.

 IGNCR Ignore carriage return on input.

 ICRNL Translate carriage return to newline on input (unless IGNCR is set).

 IUCLC (not in POSIX) Map uppercase characters to lowercase on input.

 IXON Enable XON/XOFF flow control on output.

 IXANY (XSI) Typing any character will restart stopped output. (The default is to allow

 just the START character to restart output.)

 IXOFF Enable XON/XOFF flow control on input.

 IMAXBEL

 (not in POSIX) Ring bell when input queue is full. Linux does not implement this

 bit, and acts as if it is always set.

 IUTF8 (since Linux 2.6.4)

 (not in POSIX) Input is UTF8; this allows character-erase to be correctly performed

 in cooked mode.

 c_oflag flag constants:

 OPOST Enable implementation-defined output processing.

 OLCUC (not in POSIX) Map lowercase characters to uppercase on output.

 ONLCR (XSI) Map NL to CR-NL on output.

 OCRNL Map CR to NL on output.

 ONOCR Don't output CR at column 0.

 ONLRET Don't output CR.

 OFILL Send fill characters for a delay, rather than using a timed delay.

 OFDEL Fill character is ASCII DEL (0177). If unset, fill character is ASCII NUL ('\0'). Page 3/14

 (Not implemented on Linux.)

 NLDLY Newline delay mask. Values are NL0 and NL1. [requires _BSD_SOURCE or _SVID_SOURCE

 or _XOPEN_SOURCE]

 CRDLY Carriage return delay mask. Values are CR0, CR1, CR2, or CR3. [requires

 _BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

 TABDLY Horizontal tab delay mask. Values are TAB0, TAB1, TAB2, TAB3 (or XTABS, but see

 the BUGS section). A value of TAB3, that is, XTABS, expands tabs to spaces (with

 tab stops every eight columns). [requires _BSD_SOURCE or _SVID_SOURCE or

 _XOPEN_SOURCE]

 BSDLY Backspace delay mask. Values are BS0 or BS1. (Has never been implemented.) [re?

 quires _BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

 VTDLY Vertical tab delay mask. Values are VT0 or VT1.

 FFDLY Form feed delay mask. Values are FF0 or FF1. [requires _BSD_SOURCE or

 _SVID_SOURCE or _XOPEN_SOURCE]

 c_cflag flag constants:

 CBAUD (not in POSIX) Baud speed mask (4+1 bits). [requires _BSD_SOURCE or _SVID_SOURCE]

 CBAUDEX

 (not in POSIX) Extra baud speed mask (1 bit), included in CBAUD. [requires

 _BSD_SOURCE or _SVID_SOURCE]

 (POSIX says that the baud speed is stored in the termios structure without specify?

 ing where precisely, and provides cfgetispeed() and cfsetispeed() for getting at

 it. Some systems use bits selected by CBAUD in c_cflag, other systems use separate

 fields, for example, sg_ispeed and sg_ospeed.)

 CSIZE Character size mask. Values are CS5, CS6, CS7, or CS8.

 CSTOPB Set two stop bits, rather than one.

 CREAD Enable receiver.

 PARENB Enable parity generation on output and parity checking for input.

 PARODD If set, then parity for input and output is odd; otherwise even parity is used.

 HUPCL Lower modem control lines after last process closes the device (hang up).

 CLOCAL Ignore modem control lines.

 LOBLK (not in POSIX) Block output from a noncurrent shell layer. For use by shl (shell

 layers). (Not implemented on Linux.)

 CIBAUD (not in POSIX) Mask for input speeds. The values for the CIBAUD bits are the same Page 4/14

 as the values for the CBAUD bits, shifted left IBSHIFT bits. [requires _BSD_SOURCE

 or _SVID_SOURCE] (Not implemented on Linux.)

 CMSPAR (not in POSIX) Use "stick" (mark/space) parity (supported on certain serial de?

 vices): if PARODD is set, the parity bit is always 1; if PARODD is not set, then

 the parity bit is always 0. [requires _BSD_SOURCE or _SVID_SOURCE]

 CRTSCTS

 (not in POSIX) Enable RTS/CTS (hardware) flow control. [requires _BSD_SOURCE or

 _SVID_SOURCE]

 c_lflag flag constants:

 ISIG When any of the characters INTR, QUIT, SUSP, or DSUSP are received, generate the

 corresponding signal.

 ICANON Enable canonical mode (described below).

 XCASE (not in POSIX; not supported under Linux) If ICANON is also set, terminal is upper?

 case only. Input is converted to lowercase, except for characters preceded by \.

 On output, uppercase characters are preceded by \ and lowercase characters are con?

 verted to uppercase. [requires _BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

 ECHO Echo input characters.

 ECHOE If ICANON is also set, the ERASE character erases the preceding input character,

 and WERASE erases the preceding word.

 ECHOK If ICANON is also set, the KILL character erases the current line.

 ECHONL If ICANON is also set, echo the NL character even if ECHO is not set.

 ECHOCTL

 (not in POSIX) If ECHO is also set, terminal special characters other than TAB, NL,

 START, and STOP are echoed as ^X, where X is the character with ASCII code 0x40

 greater than the special character. For example, character 0x08 (BS) is echoed as

 ^H. [requires _BSD_SOURCE or _SVID_SOURCE]

 ECHOPRT

 (not in POSIX) If ICANON and ECHO are also set, characters are printed as they are

 being erased. [requires _BSD_SOURCE or _SVID_SOURCE]

 ECHOKE (not in POSIX) If ICANON is also set, KILL is echoed by erasing each character on

 the line, as specified by ECHOE and ECHOPRT. [requires _BSD_SOURCE or

 _SVID_SOURCE]

 DEFECHO Page 5/14

 (not in POSIX) Echo only when a process is reading. (Not implemented on Linux.)

 FLUSHO (not in POSIX; not supported under Linux) Output is being flushed. This flag is

 toggled by typing the DISCARD character. [requires _BSD_SOURCE or _SVID_SOURCE]

 NOFLSH Disable flushing the input and output queues when generating signals for the INT,

 QUIT, and SUSP characters.

 TOSTOP Send the SIGTTOU signal to the process group of a background process which tries to

 write to its controlling terminal.

 PENDIN (not in POSIX; not supported under Linux) All characters in the input queue are re?

 printed when the next character is read. (bash(1) handles typeahead this way.)

 [requires _BSD_SOURCE or _SVID_SOURCE]

 IEXTEN Enable implementation-defined input processing. This flag, as well as ICANON must

 be enabled for the special characters EOL2, LNEXT, REPRINT, WERASE to be inter?

 preted, and for the IUCLC flag to be effective.

 The c_cc array defines the terminal special characters. The symbolic indices (initial

 values) and meaning are:

 VDISCARD

 (not in POSIX; not supported under Linux; 017, SI, Ctrl-O) Toggle: start/stop dis?

 carding pending output. Recognized when IEXTEN is set, and then not passed as in?

 put.

 VDSUSP (not in POSIX; not supported under Linux; 031, EM, Ctrl-Y) Delayed suspend charac?

 ter (DSUSP): send SIGTSTP signal when the character is read by the user program.

 Recognized when IEXTEN and ISIG are set, and the system supports job control, and

 then not passed as input.

 VEOF (004, EOT, Ctrl-D) End-of-file character (EOF). More precisely: this character

 causes the pending tty buffer to be sent to the waiting user program without wait?

 ing for end-of-line. If it is the first character of the line, the read(2) in the

 user program returns 0, which signifies end-of-file. Recognized when ICANON is

 set, and then not passed as input.

 VEOL (0, NUL) Additional end-of-line character (EOL). Recognized when ICANON is set.

 VEOL2 (not in POSIX; 0, NUL) Yet another end-of-line character (EOL2). Recognized when

 ICANON is set.

 VERASE (0177, DEL, rubout, or 010, BS, Ctrl-H, or also #) Erase character (ERASE). This

 erases the previous not-yet-erased character, but does not erase past EOF or begin? Page 6/14

 ning-of-line. Recognized when ICANON is set, and then not passed as input.

 VINTR (003, ETX, Ctrl-C, or also 0177, DEL, rubout) Interrupt character (INTR). Send a

 SIGINT signal. Recognized when ISIG is set, and then not passed as input.

 VKILL (025, NAK, Ctrl-U, or Ctrl-X, or also @) Kill character (KILL). This erases the

 input since the last EOF or beginning-of-line. Recognized when ICANON is set, and

 then not passed as input.

 VLNEXT (not in POSIX; 026, SYN, Ctrl-V) Literal next (LNEXT). Quotes the next input char?

 acter, depriving it of a possible special meaning. Recognized when IEXTEN is set,

 and then not passed as input.

 VMIN Minimum number of characters for noncanonical read (MIN).

 VQUIT (034, FS, Ctrl-\) Quit character (QUIT). Send SIGQUIT signal. Recognized when

 ISIG is set, and then not passed as input.

 VREPRINT

 (not in POSIX; 022, DC2, Ctrl-R) Reprint unread characters (REPRINT). Recognized

 when ICANON and IEXTEN are set, and then not passed as input.

 VSTART (021, DC1, Ctrl-Q) Start character (START). Restarts output stopped by the Stop

 character. Recognized when IXON is set, and then not passed as input.

 VSTATUS

 (not in POSIX; not supported under Linux; status request: 024, DC4, Ctrl-T). Sta?

 tus character (STATUS). Display status information at terminal, including state of

 foreground process and amount of CPU time it has consumed. Also sends a SIGINFO

 signal (not supported on Linux) to the foreground process group.

 VSTOP (023, DC3, Ctrl-S) Stop character (STOP). Stop output until Start character typed.

 Recognized when IXON is set, and then not passed as input.

 VSUSP (032, SUB, Ctrl-Z) Suspend character (SUSP). Send SIGTSTP signal. Recognized when

 ISIG is set, and then not passed as input.

 VSWTCH (not in POSIX; not supported under Linux; 0, NUL) Switch character (SWTCH). Used

 in System V to switch shells in shell layers, a predecessor to shell job control.

 VTIME Timeout in deciseconds for noncanonical read (TIME).

 VWERASE

 (not in POSIX; 027, ETB, Ctrl-W) Word erase (WERASE). Recognized when ICANON and

 IEXTEN are set, and then not passed as input.

 An individual terminal special character can be disabled by setting the value of the cor? Page 7/14

 responding c_cc element to _POSIX_VDISABLE.

 The above symbolic subscript values are all different, except that VTIME, VMIN may have

 the same value as VEOL, VEOF, respectively. In noncanonical mode the special character

 meaning is replaced by the timeout meaning. For an explanation of VMIN and VTIME, see the

 description of noncanonical mode below.

 Retrieving and changing terminal settings

 tcgetattr() gets the parameters associated with the object referred by fd and stores them

 in the termios structure referenced by termios_p. This function may be invoked from a

 background process; however, the terminal attributes may be subsequently changed by a

 foreground process.

 tcsetattr() sets the parameters associated with the terminal (unless support is required

 from the underlying hardware that is not available) from the termios structure referred to

 by termios_p. optional_actions specifies when the changes take effect:

 TCSANOW

 the change occurs immediately.

 TCSADRAIN

 the change occurs after all output written to fd has been transmitted. This option

 should be used when changing parameters that affect output.

 TCSAFLUSH

 the change occurs after all output written to the object referred by fd has been

 transmitted, and all input that has been received but not read will be discarded

 before the change is made.

 Canonical and noncanonical mode

 The setting of the ICANON canon flag in c_lflag determines whether the terminal is operat?

 ing in canonical mode (ICANON set) or noncanonical mode (ICANON unset). By default,

 ICANON is set.

 In canonical mode:

 * Input is made available line by line. An input line is available when one of the line

 delimiters is typed (NL, EOL, EOL2; or EOF at the start of line). Except in the case of

 EOF, the line delimiter is included in the buffer returned by read(2).

 * Line editing is enabled (ERASE, KILL; and if the IEXTEN flag is set: WERASE, REPRINT,

 LNEXT). A read(2) returns at most one line of input; if the read(2) requested fewer

 bytes than are available in the current line of input, then only as many bytes as re? Page 8/14

 quested are read, and the remaining characters will be available for a future read(2).

 * The maximum line length is 4096 chars (including the terminating newline character);

 lines longer than 4096 chars are truncated. After 4095 characters, input processing

 (e.g., ISIG and ECHO* processing) continues, but any input data after 4095 characters up

 to (but not including) any terminating newline is discarded. This ensures that the ter?

 minal can always receive more input until at least one line can be read.

 In noncanonical mode input is available immediately (without the user having to type a

 line-delimiter character), no input processing is performed, and line editing is disabled.

 The read buffer will only accept 4095 chars; this provides the necessary space for a new?

 line char if the input mode is switched to canonical. The settings of MIN (c_cc[VMIN])

 and TIME (c_cc[VTIME]) determine the circumstances in which a read(2) completes; there are

 four distinct cases:

 MIN == 0, TIME == 0 (polling read)

 If data is available, read(2) returns immediately, with the lesser of the number of

 bytes available, or the number of bytes requested. If no data is available,

 read(2) returns 0.

 MIN > 0, TIME == 0 (blocking read)

 read(2) blocks until MIN bytes are available, and returns up to the number of bytes

 requested.

 MIN == 0, TIME > 0 (read with timeout)

 TIME specifies the limit for a timer in tenths of a second. The timer is started

 when read(2) is called. read(2) returns either when at least one byte of data is

 available, or when the timer expires. If the timer expires without any input be?

 coming available, read(2) returns 0. If data is already available at the time of

 the call to read(2), the call behaves as though the data was received immediately

 after the call.

 MIN > 0, TIME > 0 (read with interbyte timeout)

 TIME specifies the limit for a timer in tenths of a second. Once an initial byte

 of input becomes available, the timer is restarted after each further byte is re?

 ceived. read(2) returns when any of the following conditions is met:

 * MIN bytes have been received.

 * The interbyte timer expires.

 * The number of bytes requested by read(2) has been received. (POSIX does not Page 9/14

 specify this termination condition, and on some other implementations read(2)

 does not return in this case.)

 Because the timer is started only after the initial byte becomes available, at

 least one byte will be read. If data is already available at the time of the call

 to read(2), the call behaves as though the data was received immediately after the

 call.

 POSIX does not specify whether the setting of the O_NONBLOCK file status flag takes prece?

 dence over the MIN and TIME settings. If O_NONBLOCK is set, a read(2) in noncanonical

 mode may return immediately, regardless of the setting of MIN or TIME. Furthermore, if no

 data is available, POSIX permits a read(2) in noncanonical mode to return either 0, or -1

 with errno set to EAGAIN.

 Raw mode

 cfmakeraw() sets the terminal to something like the "raw" mode of the old Version 7 termi?

 nal driver: input is available character by character, echoing is disabled, and all spe?

 cial processing of terminal input and output characters is disabled. The terminal at?

 tributes are set as follows:

 termios_p->c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP

 | INLCR | IGNCR | ICRNL | IXON);

 termios_p->c_oflag &= ~OPOST;

 termios_p->c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);

 termios_p->c_cflag &= ~(CSIZE | PARENB);

 termios_p->c_cflag |= CS8;

 Line control

 tcsendbreak() transmits a continuous stream of zero-valued bits for a specific duration,

 if the terminal is using asynchronous serial data transmission. If duration is zero, it

 transmits zero-valued bits for at least 0.25 seconds, and not more than 0.5 seconds. If

 duration is not zero, it sends zero-valued bits for some implementation-defined length of

 time.

 If the terminal is not using asynchronous serial data transmission, tcsendbreak() returns

 without taking any action.

 tcdrain() waits until all output written to the object referred to by fd has been trans?

 mitted.

 tcflush() discards data written to the object referred to by fd but not transmitted, or Page 10/14

 data received but not read, depending on the value of queue_selector:

 TCIFLUSH

 flushes data received but not read.

 TCOFLUSH

 flushes data written but not transmitted.

 TCIOFLUSH

 flushes both data received but not read, and data written but not transmitted.

 tcflow() suspends transmission or reception of data on the object referred to by fd, de?

 pending on the value of action:

 TCOOFF suspends output.

 TCOON restarts suspended output.

 TCIOFF transmits a STOP character, which stops the terminal device from transmitting data

 to the system.

 TCION transmits a START character, which starts the terminal device transmitting data to

 the system.

 The default on open of a terminal file is that neither its input nor its output is sus?

 pended.

 Line speed

 The baud rate functions are provided for getting and setting the values of the input and

 output baud rates in the termios structure. The new values do not take effect until tcse?

 tattr() is successfully called.

 Setting the speed to B0 instructs the modem to "hang up". The actual bit rate correspond?

 ing to B38400 may be altered with setserial(8).

 The input and output baud rates are stored in the termios structure.

 cfgetospeed() returns the output baud rate stored in the termios structure pointed to by

 termios_p.

 cfsetospeed() sets the output baud rate stored in the termios structure pointed to by

 termios_p to speed, which must be one of these constants:

 B0

 B50

 B75

 B110

 B134 Page 11/14

 B150

 B200

 B300

 B600

 B1200

 B1800

 B2400

 B4800

 B9600

 B19200

 B38400

 B57600

 B115200

 B230400

 The zero baud rate, B0, is used to terminate the connection. If B0 is specified, the mo?

 dem control lines shall no longer be asserted. Normally, this will disconnect the line.

 CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600 and above). Thus,

 B57600 & CBAUDEX is nonzero.

 cfgetispeed() returns the input baud rate stored in the termios structure.

 cfsetispeed() sets the input baud rate stored in the termios structure to speed, which

 must be specified as one of the Bnnn constants listed above for cfsetospeed(). If the in?

 put baud rate is set to zero, the input baud rate will be equal to the output baud rate.

 cfsetspeed() is a 4.4BSD extension. It takes the same arguments as cfsetispeed(), and

 sets both input and output speed.

RETURN VALUE

 cfgetispeed() returns the input baud rate stored in the termios structure.

 cfgetospeed() returns the output baud rate stored in the termios structure.

 All other functions return:

 0 on success.

 -1 on failure and set errno to indicate the error.

 Note that tcsetattr() returns success if any of the requested changes could be success?

 fully carried out. Therefore, when making multiple changes it may be necessary to follow

 this call with a further call to tcgetattr() to check that all changes have been performed Page 12/14

 successfully.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?tcgetattr(), tcsetattr(), tcdrain(), ? Thread safety ? MT-Safe ?

 ?tcflush(), tcflow(), tcsendbreak(), ? ? ?

 ?cfmakeraw(), cfgetispeed(), ? ? ?

 ?cfgetospeed(), cfsetispeed(), ? ? ?

 ?cfsetospeed(), cfsetspeed() ? ? ?

 ???

CONFORMING TO

 tcgetattr(), tcsetattr(), tcsendbreak(), tcdrain(), tcflush(), tcflow(), cfgetispeed(),

 cfgetospeed(), cfsetispeed(), and cfsetospeed() are specified in POSIX.1-2001.

 cfmakeraw() and cfsetspeed() are nonstandard, but available on the BSDs.

NOTES

 UNIX V7 and several later systems have a list of baud rates where after the fourteen val?

 ues B0, ..., B9600 one finds the two constants EXTA, EXTB ("External A" and "External B").

 Many systems extend the list with much higher baud rates.

 The effect of a nonzero duration with tcsendbreak() varies. SunOS specifies a break of

 duration * N seconds, where N is at least 0.25, and not more than 0.5. Linux, AIX, DU,

 Tru64 send a break of duration milliseconds. FreeBSD and NetBSD and HP-UX and MacOS ig?

 nore the value of duration. Under Solaris and UnixWare, tcsendbreak() with nonzero dura?

 tion behaves like tcdrain().

BUGS

 On the Alpha architecture before Linux 4.16 (and glibc before 2.28), the XTABS value was

 different from TAB3 and it was ignored by the N_TTY line discipline code of the terminal

 driver as a result (because as it wasn't part of the TABDLY mask).

SEE ALSO

 reset(1), setterm(1), stty(1), tput(1), tset(1), tty(1), ioctl_console(2), ioctl_tty(2),

 setserial(8)

COLOPHON Page 13/14

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 TERMIOS(3)

Page 14/14

