PDF generator

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'cgroup_namespaces.7"'

$ man cgroup_namespaces.7
CGROUP_NAMESPACES(7) Linux Programmer's Manual CGROUP_NAMESPACES(7)
NAME

cgroup_namespaces - overview of Linux cgroup namespaces
DESCRIPTION

For an overview of namespaces, see namespaces(7).

Cgroup namespaces virtualize the view of a process's cgroups (see cgroups(7)) as seen via

/proc/[pid]/cgroup and /proc/[pid]/mountinfo.

Each cgroup namespace has its own set of cgroup root directories. These root directories

are the base points for the relative locations displayed in the corresponding records in

the /proc/[pid]/cgroup file. When a process creates a new cgroup namespace using clone(2)

or unshare(2) with the CLONE_NEWCGROUP flag, its current cgroups directories become the

cgroup root directories of the new namespace. (This applies both for the cgroups version

1 hierarchies and the cgroups version 2 unified hierarchy.)

When reading the cgroup memberships of a "target" process from /proc/[pid]/cgroup, the

pathname shown in the third field of each record will be relative to the reading process's

root directory for the corresponding cgroup hierarchy. If the cgroup directory of the

target process lies outside the root directory of the reading process's cgroup namespace,

then the pathname will show ../ entries for each ancestor level in the cgroup hierarchy.

The following shell session demonstrates the effect of creating a new cgroup namespace.

First, (as superuser) in a shell in the initial cgroup namespace, we create a child cgroup

in the freezer hierarchy, and place a process in that cgroup that we will use as part of

the demonstration below:

mkdir -p /sys/fs/cgroup/freezer/sub2 Page 1/4

sleep 10000 & # Create a process that lives for a while

[1] 20124

echo 20124 > /sys/fs/cgroup/freezer/sub2/cgroup.procs
We then create another child cgroup in the freezer hierarchy and put the shell into that
cgroup:

mkdir -p /sys/fs/cgroup/freezer/sub

echo $$ # Show PID of this shell

30655

echo 30655 > /sys/fs/cgroup/freezer/sub/cgroup.procs

cat /proc/self/cgroup | grep freezer

7:freezer:/sub
Next, we use unshare(1) to create a process running a new shell in new cgroup and mount
namespaces:

PS1="sh2# " unshare -Cm bash
From the new shell started by unshare(1), we then inspect the /proc/[pid]/cgroup files of,
respectively, the new shell, a process that is in the initial cgroup namespace (init, with
PID 1), and the process in the sibling cgroup (sub2):

sh2# cat /proc/self/cgroup | grep freezer

7:freezer:/

sh2# cat /proc/1/cgroup | grep freezer

7:freezer:/..

sh2# cat /proc/20124/cgroup | grep freezer

7:freezer:/../sub2
From the output of the first command, we see that the freezer cgroup membership of the new
shell (which is in the same cgroup as the initial shell) is shown defined relative to the
freezer cgroup root directory that was established when the new cgroup namespace was cre?
ated. (In absolute terms, the new shell is in the /sub freezer cgroup, and the root di?
rectory of the freezer cgroup hierarchy in the new cgroup namespace is also /sub. Thus,
the new shell's cgroup membership is displayed as '/'.)
However, when we look in /proc/self/mountinfo we see the following anomaly:

sh2# cat /proc/self/mountinfo | grep freezer

155 145 0:32 /.. Isysl/fs/cgroupl/freezer ...

The fourth field of this line (/..) should show the directory in the cgroup filesystem Page 2/4

which forms the root of this mount. Since by the definition of cgroup namespaces, the

process's current freezer cgroup directory became its root freezer cgroup directory, we

should see /' in this field. The problem here is that we are seeing a mount entry for

the cgroup filesystem corresponding to the initial cgroup namespace (whose cgroup filesys?

tem is indeed rooted at the parent directory of sub). To fix this problem, we must re?

mount the freezer cgroup filesystem from the new shell (i.e., perform the mount from a

process that is in the new cgroup namespace), after which we see the expected results:

sh2# mount --make-rslave / # Don't propagate mount events

to other namespaces

sh2# umount /sys/fs/cgroup/freezer

sh2# mount -t cgroup -o freezer freezer /sys/fs/cgroup/freezer

sh2# cat /proc/self/mountinfo | grep freezer

155 145 0:32 / Isyslfs/cgroup/freezer rw,relatime ...
CONFORMING TO

Namespaces are a Linux-specific feature.

NOTES

Use of cgroup namespaces requires a kernel that is configured with the CONFIG_CGROUPS op?

tion.

The virtualization provided by cgroup namespaces serves a number of purposes:

* |t prevents information leaks whereby cgroup directory paths outside of a container
would otherwise be visible to processes in the container. Such leakages could, for ex?
ample, reveal information about the container framework to containerized applications.

* |t eases tasks such as container migration. The virtualization provided by cgroup name?
spaces allows containers to be isolated from knowledge of the pathnames of ancestor
cgroups. Without such isolation, the full cgroup pathnames (displayed in
/proc/self/cgroups) would need to be replicated on the target system when migrating a
container; those pathnames would also need to be unique, so that they don't conflict
with other pathnames on the target system.

* |t allows better confinement of containerized processes, because it is possible to mount
the container's cgroup filesystems such that the container processes can't gain access
to ancestor cgroup directories. Consider, for example, the following scenario:

? We have a cgroup directory, /cg/1, that is owned by user ID 9000.

? We have a process, X, also owned by user ID 9000, that is namespaced under the Page 3/4

cgroup /cg/1/2 (i.e., X was placed in a new cgroup namespace via clone(2) or un?
share(2) with the CLONE_NEWCGROUP flag).
In the absence of cgroup namespacing, because the cgroup directory /cg/1 is owned (and
writable) by UID 9000 and process X is also owned by user ID 9000, process X would be
able to modify the contents of cgroups files (i.e., change cgroup settings) not only in
/cg/1/2 but also in the ancestor cgroup directory /cg/1. Namespacing process X under
the cgroup directory /cg/1/2, in combination with suitable mount operations for the
cgroup filesystem (as shown above), prevents it modifying files in /cg/1, since it can?
not even see the contents of that directory (or of further removed cgroup ancestor di?
rectories). Combined with correct enforcement of hierarchical limits, this prevents
process X from escaping the limits imposed by ancestor cgroups.
SEE ALSO
unshare(1), clone(2), setns(2), unshare(2), proc(5), cgroups(7), credentials(7), name?
spaces(7), user_namespaces(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 CGROUP_NAMESPACES(7)

Page 4/4

