
Rocky Enterprise Linux 9.2 Manual Pages on command 'charsets.7'

$ man charsets.7

CHARSETS(7) Linux Programmer's Manual CHARSETS(7)

NAME

 charsets - character set standards and internationalization

DESCRIPTION

 This manual page gives an overview on different character set standards and how they were

 used on Linux before Unicode became ubiquitous. Some of this information is still helpful

 for people working with legacy systems and documents.

 Standards discussed include such as ASCII, GB 2312, ISO 8859, JIS, KOI8-R, KS, and Uni?

 code.

 The primary emphasis is on character sets that were actually used by locale character

 sets, not the myriad others that could be found in data from other systems.

 ASCII

 ASCII (American Standard Code For Information Interchange) is the original 7-bit character

 set, originally designed for American English. Also known as US-ASCII. It is currently

 described by the ISO 646:1991 IRV (International Reference Version) standard.

 Various ASCII variants replacing the dollar sign with other currency symbols and replacing

 punctuation with non-English alphabetic characters to cover German, French, Spanish, and

 others in 7 bits emerged. All are deprecated; glibc does not support locales whose char?

 acter sets are not true supersets of ASCII.

 As Unicode, when using UTF-8, is ASCII-compatible, plain ASCII text still renders properly

 on modern UTF-8 using systems.

 ISO 8859

 ISO 8859 is a series of 15 8-bit character sets, all of which have ASCII in their low Page 1/7

 (7-bit) half, invisible control characters in positions 128 to 159, and 96 fixed-width

 graphics in positions 160?255.

 Of these, the most important is ISO 8859-1 ("Latin Alphabet No .1" / Latin-1). It was

 widely adopted and supported by different systems, and is gradually being replaced with

 Unicode. The ISO 8859-1 characters are also the first 256 characters of Unicode.

 Console support for the other 8859 character sets is available under Linux through user-

 mode utilities (such as setfont(8)) that modify keyboard bindings and the EGA graphics ta?

 ble and employ the "user mapping" font table in the console driver.

 Here are brief descriptions of each set:

 8859-1 (Latin-1)

 Latin-1 covers many West European languages such as Albanian, Basque, Danish, Eng?

 lish, Faroese, Galician, Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish,

 and Swedish. The lack of the ligatures Dutch ?/?, French ?, and old-style ?German?

 quotation marks was considered tolerable.

 8859-2 (Latin-2)

 Latin-2 supports many Latin-written Central and East European languages such as

 Bosnian, Croatian, Czech, German, Hungarian, Polish, Slovak, and Slovene. Replac?

 ing Romanian ?/? with ?/? was considered tolerable.

 8859-3 (Latin-3)

 Latin-3 was designed to cover of Esperanto, Maltese, and Turkish, but 8859-9 later

 superseded it for Turkish.

 8859-4 (Latin-4)

 Latin-4 introduced letters for North European languages such as Estonian, Latvian,

 and Lithuanian, but was superseded by 8859-10 and 8859-13.

 8859-5 Cyrillic letters supporting Bulgarian, Byelorussian, Macedonian, Russian, Serbian,

 and (almost completely) Ukrainian. It was never widely used, see the discussion of

 KOI8-R/KOI8-U below.

 8859-6 Was created for Arabic. The 8859-6 glyph table is a fixed font of separate letter

 forms, but a proper display engine should combine these using the proper initial,

 medial, and final forms.

 8859-7 Was created for Modern Greek in 1987, updated in 2003.

 8859-8 Supports Modern Hebrew without niqud (punctuation signs). Niqud and full-fledged

 Biblical Hebrew were outside the scope of this character set. Page 2/7

 8859-9 (Latin-5)

 This is a variant of Latin-1 that replaces Icelandic letters with Turkish ones.

 8859-10 (Latin-6)

 Latin-6 added the Inuit (Greenlandic) and Sami (Lappish) letters that were missing

 in Latin-4 to cover the entire Nordic area.

 8859-11

 Supports the Thai alphabet and is nearly identical to the TIS-620 standard.

 8859-12

 This set does not exist.

 8859-13 (Latin-7)

 Supports the Baltic Rim languages; in particular, it includes Latvian characters

 not found in Latin-4.

 8859-14 (Latin-8)

 This is the Celtic character set, covering Old Irish, Manx, Gaelic, Welsh, Cornish,

 and Breton.

 8859-15 (Latin-9)

 Latin-9 is similar to the widely used Latin-1 but replaces some less common symbols

 with the Euro sign and French and Finnish letters that were missing in Latin-1.

 8859-16 (Latin-10)

 This set covers many Southeast European languages, and most importantly supports

 Romanian more completely than Latin-2.

 KOI8-R / KOI8-U

 KOI8-R is a non-ISO character set popular in Russia before Unicode. The lower half is

 ASCII; the upper is a Cyrillic character set somewhat better designed than ISO 8859-5.

 KOI8-U, based on KOI8-R, has better support for Ukrainian. Neither of these sets are

 ISO-2022 compatible, unlike the ISO 8859 series.

 Console support for KOI8-R is available under Linux through user-mode utilities that mod?

 ify keyboard bindings and the EGA graphics table, and employ the "user mapping" font table

 in the console driver.

 GB 2312

 GB 2312 is a mainland Chinese national standard character set used to express simplified

 Chinese. Just like JIS X 0208, characters are mapped into a 94x94 two-byte matrix used to

 construct EUC-CN. EUC-CN is the most important encoding for Linux and includes ASCII and Page 3/7

 GB 2312. Note that EUC-CN is often called as GB, GB 2312, or CN-GB.

 Big5

 Big5 was a popular character set in Taiwan to express traditional Chinese. (Big5 is both

 a character set and an encoding.) It is a superset of ASCII. Non-ASCII characters are

 expressed in two bytes. Bytes 0xa1?0xfe are used as leading bytes for two-byte charac?

 ters. Big5 and its extension were widely used in Taiwan and Hong Kong. It is not ISO

 2022 compliant.

 JIS X 0208

 JIS X 0208 is a Japanese national standard character set. Though there are some more Ja?

 panese national standard character sets (like JIS X 0201, JIS X 0212, and JIS X 0213),

 this is the most important one. Characters are mapped into a 94x94 two-byte matrix, whose

 each byte is in the range 0x21?0x7e. Note that JIS X 0208 is a character set, not an en?

 coding. This means that JIS X 0208 itself is not used for expressing text data. JIS X

 0208 is used as a component to construct encodings such as EUC-JP, Shift_JIS, and

 ISO-2022-JP. EUC-JP is the most important encoding for Linux and includes ASCII and JIS X

 0208. In EUC-JP, JIS X 0208 characters are expressed in two bytes, each of which is the

 JIS X 0208 code plus 0x80.

 KS X 1001

 KS X 1001 is a Korean national standard character set. Just as JIS X 0208, characters are

 mapped into a 94x94 two-byte matrix. KS X 1001 is used like JIS X 0208, as a component to

 construct encodings such as EUC-KR, Johab, and ISO-2022-KR. EUC-KR is the most important

 encoding for Linux and includes ASCII and KS X 1001. KS C 5601 is an older name for KS X

 1001.

 ISO 2022 and ISO 4873

 The ISO 2022 and 4873 standards describe a font-control model based on VT100 practice.

 This model is (partially) supported by the Linux kernel and by xterm(1). Several ISO

 2022-based character encodings have been defined, especially for Japanese.

 There are 4 graphic character sets, called G0, G1, G2, and G3, and one of them is the cur?

 rent character set for codes with high bit zero (initially G0), and one of them is the

 current character set for codes with high bit one (initially G1). Each graphic character

 set has 94 or 96 characters, and is essentially a 7-bit character set. It uses codes ei?

 ther 040?0177 (041?0176) or 0240?0377 (0241?0376). G0 always has size 94 and uses codes

 041?0176. Page 4/7

 Switching between character sets is done using the shift functions ^N (SO or LS1), ^O (SI

 or LS0), ESC n (LS2), ESC o (LS3), ESC N (SS2), ESC O (SS3), ESC ~ (LS1R), ESC } (LS2R),

 ESC | (LS3R). The function LSn makes character set Gn the current one for codes with high

 bit zero. The function LSnR makes character set Gn the current one for codes with high

 bit one. The function SSn makes character set Gn (n=2 or 3) the current one for the next

 character only (regardless of the value of its high order bit).

 A 94-character set is designated as Gn character set by an escape sequence ESC (xx (for

 G0), ESC) xx (for G1), ESC * xx (for G2), ESC + xx (for G3), where xx is a symbol or a

 pair of symbols found in the ISO 2375 International Register of Coded Character Sets. For

 example, ESC (@ selects the ISO 646 character set as G0, ESC (A selects the UK standard

 character set (with pound instead of number sign), ESC (B selects ASCII (with dollar in?

 stead of currency sign), ESC (M selects a character set for African languages, ESC (! A

 selects the Cuban character set, and so on.

 A 96-character set is designated as Gn character set by an escape sequence ESC - xx (for

 G1), ESC . xx (for G2) or ESC / xx (for G3). For example, ESC - G selects the Hebrew al?

 phabet as G1.

 A multibyte character set is designated as Gn character set by an escape sequence ESC $ xx

 or ESC $ (xx (for G0), ESC $) xx (for G1), ESC $ * xx (for G2), ESC $ + xx (for G3).

 For example, ESC $ (C selects the Korean character set for G0. The Japanese character

 set selected by ESC $ B has a more recent version selected by ESC & @ ESC $ B.

 ISO 4873 stipulates a narrower use of character sets, where G0 is fixed (always ASCII), so

 that G1, G2 and G3 can be invoked only for codes with the high order bit set. In particu?

 lar, ^N and ^O are not used anymore, ESC (xx can be used only with xx=B, and ESC) xx,

 ESC * xx, ESC + xx are equivalent to ESC - xx, ESC . xx, ESC / xx, respectively.

 TIS-620

 TIS-620 is a Thai national standard character set and a superset of ASCII. In the same

 fashion as the ISO 8859 series, Thai characters are mapped into 0xa1?0xfe.

 Unicode

 Unicode (ISO 10646) is a standard which aims to unambiguously represent every character in

 every human language. Unicode's structure permits 20.1 bits to encode every character.

 Since most computers don't include 20.1-bit integers, Unicode is usually encoded as 32-bit

 integers internally and either a series of 16-bit integers (UTF-16) (needing two 16-bit

 integers only when encoding certain rare characters) or a series of 8-bit bytes (UTF-8). Page 5/7

 Linux represents Unicode using the 8-bit Unicode Transformation Format (UTF-8). UTF-8 is

 a variable length encoding of Unicode. It uses 1 byte to code 7 bits, 2 bytes for 11

 bits, 3 bytes for 16 bits, 4 bytes for 21 bits, 5 bytes for 26 bits, 6 bytes for 31 bits.

 Let 0,1,x stand for a zero, one, or arbitrary bit. A byte 0xxxxxxx stands for the Unicode

 00000000 0xxxxxxx which codes the same symbol as the ASCII 0xxxxxxx. Thus, ASCII goes un?

 changed into UTF-8, and people using only ASCII do not notice any change: not in code, and

 not in file size.

 A byte 110xxxxx is the start of a 2-byte code, and 110xxxxx 10yyyyyy is assembled into

 00000xxx xxyyyyyy. A byte 1110xxxx is the start of a 3-byte code, and 1110xxxx 10yyyyyy

 10zzzzzz is assembled into xxxxyyyy yyzzzzzz. (When UTF-8 is used to code the 31-bit ISO

 10646 then this progression continues up to 6-byte codes.)

 For most texts in ISO 8859 character sets, this means that the characters outside of ASCII

 are now coded with two bytes. This tends to expand ordinary text files by only one or two

 percent. For Russian or Greek texts, this expands ordinary text files by 100%, since text

 in those languages is mostly outside of ASCII. For Japanese users this means that the

 16-bit codes now in common use will take three bytes. While there are algorithmic conver?

 sions from some character sets (especially ISO 8859-1) to Unicode, general conversion re?

 quires carrying around conversion tables, which can be quite large for 16-bit codes.

 Note that UTF-8 is self-synchronizing: 10xxxxxx is a tail, any other byte is the head of a

 code. Note that the only way ASCII bytes occur in a UTF-8 stream, is as themselves. In

 particular, there are no embedded NULs ('\0') or '/'s that form part of some larger code.

 Since ASCII, and, in particular, NUL and '/', are unchanged, the kernel does not notice

 that UTF-8 is being used. It does not care at all what the bytes it is handling stand

 for.

 Rendering of Unicode data streams is typically handled through "subfont" tables which map

 a subset of Unicode to glyphs. Internally the kernel uses Unicode to describe the subfont

 loaded in video RAM. This means that in the Linux console in UTF-8 mode, one can use a

 character set with 512 different symbols. This is not enough for Japanese, Chinese, and

 Korean, but it is enough for most other purposes.

SEE ALSO

 iconv(1), ascii(7), iso_8859-1(7), unicode(7), utf-8(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the Page 6/7

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 CHARSETS(7)

Page 7/7

