
Rocky Enterprise Linux 9.2 Manual Pages on command 'chat.8'

$ man chat.8

CHAT(8) System Manager's Manual CHAT(8)

NAME

 chat - Automated conversational script with a modem

SYNOPSIS

 chat [options] script

DESCRIPTION

 The chat program defines a conversational exchange between the computer and the modem. Its

 primary purpose is to establish the connection between the Point-to-Point Protocol Daemon

 (pppd) and the remote's pppd process.

OPTIONS

 -f <chat file>

 Read the chat script from the chat file. The use of this option is mutually exclu?

 sive with the chat script parameters. The user must have read access to the file.

 Multiple lines are permitted in the file. Space or horizontal tab characters should

 be used to separate the strings.

 -t <timeout>

 Set the timeout for the expected string to be received. If the string is not re?

 ceived within the time limit then the reply string is not sent. An alternate reply

 may be sent or the script will fail if there is no alternate reply string. A failed

 script will cause the chat program to terminate with a non-zero error code. You can

 also use the TIMEOUT string in order to specify the timeout.

 -r <report file>

 Set the file for output of the report strings. If you use the keyword REPORT, the Page 1/10

 resulting strings are written to this file. If this option is not used and you

 still use REPORT keywords, the stderr file is used for the report strings.

 -e Start with the echo option turned on. Echoing may also be turned on or off at spe?

 cific points in the chat script by using the ECHO keyword. When echoing is enabled,

 all output from the modem is echoed to stderr.

 -E Enables environment variable substitution within chat scripts using the standard

 $xxx syntax.

 -v Request that the chat script be executed in a verbose mode. The chat program will

 then log the execution state of the chat script as well as all text received from

 the modem and the output strings sent to the modem. The default is to log through

 the SYSLOG; the logging method may be altered with the -S and -s flags.

 -V Request that the chat script be executed in a stderr verbose mode. The chat program

 will then log all text received from the modem and the output strings sent to the

 modem to the stderr device. This device is usually the local console at the station

 running the chat or pppd program.

 -s Use stderr. All log messages from '-v' and all error messages will be sent to

 stderr.

 -S Do not use the SYSLOG. By default, error messages are sent to the SYSLOG. The use

 of -S will prevent both log messages from '-v' and error messages from being sent

 to the SYSLOG.

 -T <phone number>

 Pass in an arbitrary string, usually a phone number, that will be substituted for

 the \T substitution metacharacter in a send string.

 -U <phone number 2>

 Pass in a second string, usually a phone number, that will be substituted for the

 \U substitution metacharacter in a send string. This is useful when dialing an

 ISDN terminal adapter that requires two numbers.

 script If the script is not specified in a file with the -f option then the script is in?

 cluded as parameters to the chat program.

CHAT SCRIPT

 The chat script defines the communications.

 A script consists of one or more "expect-send" pairs of strings, separated by spaces, with

 an optional "subexpect-subsend" string pair, separated by a dash as in the following exam? Page 2/10

 ple:

 ogin:-BREAK-ogin: ppp ssword: hello2u2

 This line indicates that the chat program should expect the string "ogin:". If it fails to

 receive a login prompt within the time interval allotted, it is to send a break sequence

 to the remote and then expect the string "ogin:". If the first "ogin:" is received then

 the break sequence is not generated.

 Once it received the login prompt the chat program will send the string ppp and then ex?

 pect the prompt "ssword:". When it receives the prompt for the password, it will send the

 password hello2u2.

 A carriage return is normally sent following the reply string. It is not expected in the

 "expect" string unless it is specifically requested by using the \r character sequence.

 The expect sequence should contain only what is needed to identify the string. Since it is

 normally stored on a disk file, it should not contain variable information. It is gener?

 ally not acceptable to look for time strings, network identification strings, or other

 variable pieces of data as an expect string.

 To help correct for characters which may be corrupted during the initial sequence, look

 for the string "ogin:" rather than "login:". It is possible that the leading "l" character

 may be received in error and you may never find the string even though it was sent by the

 system. For this reason, scripts look for "ogin:" rather than "login:" and "ssword:"

 rather than "password:".

 A very simple script might look like this:

 ogin: ppp ssword: hello2u2

 In other words, expectogin:, send ppp, expect ...ssword:, send hello2u2.

 In actual practice, simple scripts are rare. At the vary least, you should include sub-ex?

 pect sequences should the original string not be received. For example, consider the fol?

 lowing script:

 ogin:--ogin: ppp ssword: hello2u2

 This would be a better script than the simple one used earlier. This would look for the

 same login: prompt, however, if one was not received, a single return sequence is sent and

 then it will look for login: again. Should line noise obscure the first login prompt then

 sending the empty line will usually generate a login prompt again.

COMMENTS

 Comments can be embedded in the chat script. A comment is a line which starts with the # Page 3/10

 (hash) character in column 1. Such comment lines are just ignored by the chat program. If

 a '#' character is to be expected as the first character of the expect sequence, you

 should quote the expect string. If you want to wait for a prompt that starts with a #

 (hash) character, you would have to write something like this:

 # Now wait for the prompt and send logout string

 '# ' logout

SENDING DATA FROM A FILE

 If the string to send starts with an at sign (@), the rest of the string is taken to be

 the name of a file to read to get the string to send. If the last character of the data

 read is a newline, it is removed. The file can be a named pipe (or fifo) instead of a

 regular file. This provides a way for chat to communicate with another program, for exam?

 ple, a program to prompt the user and receive a password typed in.

ABORT STRINGS

 Many modems will report the status of the call as a string. These strings may be CONNECTED

 or NO CARRIER or BUSY. It is often desirable to terminate the script should the modem fail

 to connect to the remote. The difficulty is that a script would not know exactly which mo?

 dem string it may receive. On one attempt, it may receive BUSY while the next time it may

 receive NO CARRIER.

 These "abort" strings may be specified in the script using the ABORT sequence. It is writ?

 ten in the script as in the following example:

 ABORT BUSY ABORT 'NO CARRIER' '' ATZ OK ATDT5551212 CONNECT

 This sequence will expect nothing; and then send the string ATZ. The expected response to

 this is the string OK. When it receives OK, the string ATDT5551212 to dial the telephone.

 The expected string is CONNECT. If the string CONNECT is received the remainder of the

 script is executed. However, should the modem find a busy telephone, it will send the

 string BUSY. This will cause the string to match the abort character sequence. The script

 will then fail because it found a match to the abort string. If it received the string NO

 CARRIER, it will abort for the same reason. Either string may be received. Either string

 will terminate the chat script.

CLR_ABORT STRINGS

 This sequence allows for clearing previously set ABORT strings. ABORT strings are kept in

 an array of a pre-determined size (at compilation time); CLR_ABORT will reclaim the space

 for cleared entries so that new strings can use that space. Page 4/10

SAY STRINGS

 The SAY directive allows the script to send strings to the user at the terminal via stan?

 dard error. If chat is being run by pppd, and pppd is running as a daemon (detached from

 its controlling terminal), standard error will normally be redirected to the file

 /etc/ppp/connect-errors.

 SAY strings must be enclosed in single or double quotes. If carriage return and line feed

 are needed in the string to be output, you must explicitly add them to your string.

 The SAY strings could be used to give progress messages in sections of the script where

 you want to have 'ECHO OFF' but still let the user know what is happening. An example is:

 ABORT BUSY

 ECHO OFF

 SAY "Dialling your ISP...\n"

 '' ATDT5551212

 TIMEOUT 120

 SAY "Waiting up to 2 minutes for connection ... "

 CONNECT ''

 SAY "Connected, now logging in ...\n"

 ogin: account

 ssword: pass

 $ \c

 SAY "Logged in OK ...\n" etc ...

 This sequence will only present the SAY strings to the user and all the details of the

 script will remain hidden. For example, if the above script works, the user will see:

 Dialling your ISP...

 Waiting up to 2 minutes for connection ... Connected, now logging in ...

 Logged in OK ...

REPORT STRINGS

 A report string is similar to the ABORT string. The difference is that the strings, and

 all characters to the next control character such as a carriage return, are written to the

 report file.

 The report strings may be used to isolate the transmission rate of the modem's connect

 string and return the value to the chat user. The analysis of the report string logic oc?

 curs in conjunction with the other string processing such as looking for the expect Page 5/10

 string. The use of the same string for a report and abort sequence is probably not very

 useful, however, it is possible.

 The report strings to no change the completion code of the program.

 These "report" strings may be specified in the script using the REPORT sequence. It is

 written in the script as in the following example:

 REPORT CONNECT ABORT BUSY '' ATDT5551212 CONNECT '' ogin: account

 This sequence will expect nothing; and then send the string ATDT5551212 to dial the tele?

 phone. The expected string is CONNECT. If the string CONNECT is received the remainder of

 the script is executed. In addition the program will write to the expect-file the string

 "CONNECT" plus any characters which follow it such as the connection rate.

CLR_REPORT STRINGS

 This sequence allows for clearing previously set REPORT strings. REPORT strings are kept

 in an array of a pre-determined size (at compilation time); CLR_REPORT will reclaim the

 space for cleared entries so that new strings can use that space.

ECHO

 The echo options controls whether the output from the modem is echoed to stderr. This op?

 tion may be set with the -e option, but it can also be controlled by the ECHO keyword. The

 "expect-send" pair ECHO ON enables echoing, and ECHO OFF disables it. With this keyword

 you can select which parts of the conversation should be visible. For instance, with the

 following script:

 ABORT 'BUSY'

 ABORT 'NO CARRIER'

 '' ATZ

 OK\r\n ATD1234567

 \r\n \c

 ECHO ON

 CONNECT \c

 ogin: account

 all output resulting from modem configuration and dialing is not visible, but starting

 with the CONNECT (or BUSY) message, everything will be echoed.

HANGUP

 The HANGUP options control whether a modem hangup should be considered as an error or not.

 This option is useful in scripts for dialling systems which will hang up and call your Page 6/10

 system back. The HANGUP options can be ON or OFF.

 When HANGUP is set OFF and the modem hangs up (e.g., after the first stage of logging in

 to a callback system), chat will continue running the script (e.g., waiting for the incom?

 ing call and second stage login prompt). As soon as the incoming call is connected, you

 should use the HANGUP ON directive to reinstall normal hang up signal behavior. Here is

 an (simple) example script:

 ABORT 'BUSY'

 '' ATZ

 OK\r\n ATD1234567

 \r\n \c

 CONNECT \c

 'Callback login:' call_back_ID

 HANGUP OFF

 ABORT "Bad Login"

 'Callback Password:' Call_back_password

 TIMEOUT 120

 CONNECT \c

 HANGUP ON

 ABORT "NO CARRIER"

 ogin:--BREAK--ogin: real_account

 etc ...

TIMEOUT

 The initial timeout value is 45 seconds. This may be changed using the -t parameter. You

 can also specify "TIMEOUT 0".

 To change the timeout value for the next expect string, the following example may be used:

 ATZ OK ATDT5551212 CONNECT TIMEOUT 10 ogin:--ogin: TIMEOUT 5 assword: hello2u2

 This will change the timeout to 10 seconds when it expects the login: prompt. The timeout

 is then changed to 5 seconds when it looks for the password prompt.

 The timeout, once changed, remains in effect until it is changed again.

SENDING EOT

 The special reply string of EOT indicates that the chat program should send an EOT charac?

 ter to the remote. This is normally the End-of-file character sequence. A return character

 is not sent following the EOT. The EOT sequence may be embedded into the send string us? Page 7/10

 ing the sequence ^D.

GENERATING BREAK

 The special reply string of BREAK will cause a break condition to be sent. The break is a

 special signal on the transmitter. The normal processing on the receiver is to change the

 transmission rate. It may be used to cycle through the available transmission rates on

 the remote until you are able to receive a valid login prompt. The break sequence may be

 embedded into the send string using the \K sequence.

ESCAPE SEQUENCES

 The expect and reply strings may contain escape sequences. All of the sequences are legal

 in the reply string. Many are legal in the expect. Those which are not valid in the ex?

 pect sequence are so indicated.

 '' Expects or sends a null string. If you send a null string then it will still send

 the return character. This sequence may either be a pair of apostrophe or quote

 characters.

 \b represents a backspace character.

 \c Suppresses the newline at the end of the reply string. This is the only method to

 send a string without a trailing return character. It must be at the end of the

 send string. For example, the sequence hello\c will simply send the characters h,

 e, l, l, o. (not valid in expect.)

 \d Delay for one second. The program uses sleep(1) which will delay to a maximum of

 one second. (not valid in expect.)

 \K Insert a BREAK (not valid in expect.)

 \n Send a newline or linefeed character.

 \N Send a null character. The same sequence may be represented by \0. (not valid in

 expect.)

 \p Pause for a fraction of a second. The delay is 1/10th of a second. (not valid in

 expect.)

 \q Suppress writing the string to the SYSLOG file. The string ?????? is written to the

 log in its place. (not valid in expect.)

 \r Send or expect a carriage return.

 \s Represents a space character in the string. This may be used when it is not desir?

 able to quote the strings which contains spaces. The sequence 'HI TIM' and HI\sTIM

 are the same. Page 8/10

 \t Send or expect a tab character.

 \T Send the phone number string as specified with the -T option (not valid in expect.)

 \U Send the phone number 2 string as specified with the -U option (not valid in ex?

 pect.)

 \\ Send or expect a backslash character.

 \ddd Collapse the octal digits (ddd) into a single ASCII character and send that charac?

 ter. (some characters are not valid in expect.)

 ^C Substitute the sequence with the control character represented by C. For example,

 the character DC1 (17) is shown as ^Q. (some characters are not valid in expect.)

ENVIRONMENT VARIABLES

 Environment variables are available within chat scripts, if the -E option was specified

 in the command line. The metacharacter $ is used to introduce the name of the environment

 variable to substitute. If the substitution fails, because the requested environment vari?

 able is not set, nothing is replaced for the variable.

TERMINATION CODES

 The chat program will terminate with the following completion codes.

 0 The normal termination of the program. This indicates that the script was executed

 without error to the normal conclusion.

 1 One or more of the parameters are invalid or an expect string was too large for the

 internal buffers. This indicates that the program as not properly executed.

 2 An error occurred during the execution of the program. This may be due to a read or

 write operation failing for some reason or chat receiving a signal such as SIGINT.

 3 A timeout event occurred when there was an expect string without having a "-sub?

 send" string. This may mean that you did not program the script correctly for the

 condition or that some unexpected event has occurred and the expected string could

 not be found.

 4 The first string marked as an ABORT condition occurred.

 5 The second string marked as an ABORT condition occurred.

 6 The third string marked as an ABORT condition occurred.

 7 The fourth string marked as an ABORT condition occurred.

 ... The other termination codes are also strings marked as an ABORT condition.

 Using the termination code, it is possible to determine which event terminated the script.

 It is possible to decide if the string "BUSY" was received from the modem as opposed to Page 9/10

 "NO DIAL TONE". While the first event may be retried, the second will probably have little

 chance of succeeding during a retry.

SEE ALSO

 Additional information about chat scripts may be found with UUCP documentation. The chat

 script was taken from the ideas proposed by the scripts used by the uucico program.

 uucico(1), uucp(1)

COPYRIGHT

 The chat program is in public domain. This is not the GNU public license. If it breaks

 then you get to keep both pieces.

Chat Version 1.22 22 May 1999 CHAT(8)

Page 10/10

