
Rocky Enterprise Linux 9.2 Manual Pages on command 'dconf.7'

$ man dconf.7

DCONF(7) Conventions and miscellaneous DCONF(7)

NAME

 dconf - A configuration system

DESCRIPTION

 dconf is a simple key/value storage system that is heavily optimised for reading. This

 makes it an ideal system for storing user preferences (which are read 1000s of times for

 each time the user changes one). It was created with this usecase in mind.

 All preferences are stored in a single large binary file. Layering of preferences is

 possible using multiple files (ie: for site defaults). Lock-down is also supported. The

 binary file for the defaults can optionally be compiled from a set of plain text keyfiles.

 dconf has a partial client/server architecture. It uses D-Bus. The server is only involved

 in writes (and is not activated in the user session until the user modifies a preference).

 The service is stateless and can exit freely at any time (and is therefore robust against

 crashes). The list of paths that each process is watching is stored within the D-Bus

 daemon itself (as D-Bus signal match rules).

 Reads are performed by direct access (via mmap) to the on-disk database which is

 essentially a hashtable. For this reason, dconf reads typically involve zero system calls

 and are comparable to a hashtable lookup in terms of speed. Practically speaking, in

 simple non-layered setups, dconf is less than 10 times slower than GHashTable.

 Writes are assumed only to happen in response to explicit user interaction (like clicking

 on a checkbox in a preferences dialog) and are therefore not optimised at all. On some

 file systems, dconf-service will call fsync() for every write, which can introduce a

 latency of up to 100ms. This latency is hidden by the client libraries through a clever Page 1/4

 "fast" mechanism that records the outstanding changes locally (so they can be read back

 immediately) until the service signals that a write has completed.

 The binary database format that dconf uses by default is not suitable for use on NFS,

 where mmap does not work well. To handle this common use case, dconf can be configured to

 place its binary database in XDG_RUNTIME_DIR (which is guaranteed to be local, but

 non-persistent) and synchronize it with a plain text keyfile in the users home directory.

PROFILES

 A profile is a list of configuration databases that dconf consults to find the value for a

 key. The user's personal database always takes the highest priority, followed by the

 system databases in the order prescribed by the profile.

 On startup, dconf consults the DCONF_PROFILE environment variable. If set, dconf will

 attempt to open the named profile, aborting if that fails. If the environment variable is

 not set, it will attempt to open the profile named "user" and if that fails, it will fall

 back to an internal hard-wired configuration. dconf stores its profiles in text files.

 DCONF_PROFILE can specify a relative path to a file in /etc/dconf/profile/, or an absolute

 path (such as in a user's home directory). The profile name can only use alphanumeric

 characters or '_'.

 A profile file might look like the following:

 user-db:user

 system-db:local

 system-db:site

 Each line in a profile specifies one dconf database. The first line indicates the database

 used to write changes, and the remaining lines indicate read-only databases. (The first

 line should specify a user-db or service-db, so that users can actually make configuration

 changes.)

 A "user-db" line specifies a user database. These databases are found in

 $XDG_CONFIG_HOME/dconf/. The name of the file to open in that directory is exactly as it

 is written in the profile. This file is expected to be in the binary dconf database

 format. Note that XDG_CONFIG_HOME cannot be set/modified per terminal or session, because

 then the writer and reader would be working on different DBs (the writer is started by

 DBus and cannot see that variable).

 A "service-db" line instructs dconf to place the binary database file for the user

 database in XDG_RUNTIME_DIR. Since this location is not persistent, the rest of the line Page 2/4

 instructs dconf how to store the database persistently. A typical line is

 service-db:keyfile/user, which tells dconf to synchronize the binary database with a plain

 text keyfile in $XDG_CONFIG_HOME/dconf/user.txt. The synchronization is bi-directional.

 A "system-db" line specifies a system database. These databases are found in

 /etc/dconf/db/. Again, the name of the file to open in that directory is exactly as it is

 written in the profile and the file is expected to be in the dconf database format.

 If the DCONF_PROFILE environment variable is unset and the "user" profile can not be

 opened, then the effect is as if the profile was specified by this file:

 user-db:user

 That is, the user's personal database is consulted and there are no system settings.

KEY FILES

 To facilitate system configuration with a text editor, dconf can populate databases from

 plain text keyfiles. For any given system database, keyfiles can be placed into the

 /etc/dconf/db/database.d/ directory. The keyfiles contain groups of settings as follows:

 # Some useful default settings for our site

 [system/proxy/http]

 host='172.16.0.1'

 enabled=true

 [org/gnome/desktop/background]

 picture-uri='file:///usr/local/rupert-corp/company-wallpaper.jpeg'

 After changing keyfiles, the database needs to be updated with the dconf(1) tool.

LOCKS

 System databases can contain 'locks' for keys. If a lock for a particular key or subpath

 is installed into a database then no database listed above that one in the profile will be

 able to modify any of the affected settings. This can be used to enforce mandatory

 settings.

 To add locks to a database, place text files in the /etc/dconf/db/database.d/locks

 directory, where database is the name of a system database, as specified in the profile.

 The files contain list of keys to lock, on per line. Lines starting with a # are ignored.

 Here is an example:

 # prevent changes to the company wallpaper

 /org/gnome/desktop/background/picture-uri

 After changing locks, the database needs to be updated with the dconf(1) tool. Page 3/4

PORTABILITY

 dconf mostly targets Free Software operating systems. It will theoretically run on Mac OS

 but there isn't much point to that (since Mac OS applications want to store preferences in

 plist files). It is not possible to use dconf on Windows because of the inability to

 rename over a file that's still in use (which is what the dconf-service does on every

 write).

API STABILITY

 The dconf API is not particularly friendly, and is not guaranteed to be stable. Because of

 this and the lack of portability, you almost certainly want to use some sort of wrapper

 API around it. The wrapper API used by GTK+ and GNOME applications is GSettings[1], which

 is included as part of GLib. GSettings has backends for Windows (using the registry) and

 Mac OS (using property lists) as well as its dconf backend and is the proper API to use

 for graphical applications.

SEE ALSO

 dconf-service(1), dconf-editor(1), dconf(1), GSettings[1]

NOTES

 1. GSettings

 http://developer.gnome.org/gio/stable/GSettings.html

dconf DCONF(7)

Page 4/4

