PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'dconf.7’
$ man dconf.7
DCONF(7) Conventions and miscellaneous DCONF(7)
NAME
dconf - A configuration system
DESCRIPTION
dconf is a simple key/value storage system that is heavily optimised for reading. This
makes it an ideal system for storing user preferences (which are read 1000s of times for
each time the user changes one). It was created with this usecase in mind.
All preferences are stored in a single large binary file. Layering of preferences is
possible using multiple files (ie: for site defaults). Lock-down is also supported. The
binary file for the defaults can optionally be compiled from a set of plain text keyfiles.
dconf has a partial client/server architecture. It uses D-Bus. The server is only involved
in writes (and is not activated in the user session until the user modifies a preference).
The service is stateless and can exit freely at any time (and is therefore robust against
crashes). The list of paths that each process is watching is stored within the D-Bus
daemon itself (as D-Bus signal match rules).
Reads are performed by direct access (via mmap) to the on-disk database which is
essentially a hashtable. For this reason, dconf reads typically involve zero system calls
and are comparable to a hashtable lookup in terms of speed. Practically speaking, in
simple non-layered setups, dconf is less than 10 times slower than GHashTable.
Writes are assumed only to happen in response to explicit user interaction (like clicking
on a checkbox in a preferences dialog) and are therefore not optimised at all. On some
file systems, dconf-service will call fsync() for every write, which can introduce a

latency of up to 100ms. This latency is hidden by the client libraries through a clever Page 1/4

"fast" mechanism that records the outstanding changes locally (so they can be read back

immediately) until the service signals that a write has completed.

The binary database format that dconf uses by default is not suitable for use on NFS,

where mmap does not work well. To handle this common use case, dconf can be configured to

place its binary database in XDG_RUNTIME_DIR (which is guaranteed to be local, but

non-persistent) and synchronize it with a plain text keyfile in the users home directory.
PROFILES

A profile is a list of configuration databases that dconf consults to find the value for a

key. The user's personal database always takes the highest priority, followed by the

system databases in the order prescribed by the profile.

On startup, dconf consults the DCONF_PROFILE environment variable. If set, dconf will

attempt to open the named profile, aborting if that fails. If the environment variable is

not set, it will attempt to open the profile named "user" and if that fails, it will fall

back to an internal hard-wired configuration. dconf stores its profiles in text files.

DCONF_PROFILE can specify a relative path to a file in /etc/dconf/profile/, or an absolute

path (such as in a user's home directory). The profile name can only use alphanumeric

characters or '_
A profile file might look like the following:

user-db:user

system-db:local

system-db:site
Each line in a profile specifies one dconf database. The first line indicates the database
used to write changes, and the remaining lines indicate read-only databases. (The first
line should specify a user-db or service-db, so that users can actually make configuration
changes.)
A "user-db" line specifies a user database. These databases are found in
$XDG_CONFIG_HOME/dconf/. The name of the file to open in that directory is exactly as it
is written in the profile. This file is expected to be in the binary dconf database
format. Note that XDG_CONFIG_HOME cannot be set/modified per terminal or session, because
then the writer and reader would be working on different DBs (the writer is started by
DBus and cannot see that variable).

A "service-db" line instructs dconf to place the binary database file for the user

database in XDG_RUNTIME_DIR. Since this location is not persistent, the rest of the line Page 2/4

instructs dconf how to store the database persistently. A typical line is
service-db:keyfile/user, which tells dconf to synchronize the binary database with a plain
text keyfile in $XDG_CONFIG_HOME/dconf/user.txt. The synchronization is bi-directional.
A "system-db" line specifies a system database. These databases are found in
/etc/dconf/db/. Again, the name of the file to open in that directory is exactly as it is
written in the profile and the file is expected to be in the dconf database format.
If the DCONF_PROFILE environment variable is unset and the "user” profile can not be
opened, then the effect is as if the profile was specified by this file:

user-db:user
That is, the user's personal database is consulted and there are no system settings.

KEY FILES

To facilitate system configuration with a text editor, dconf can populate databases from
plain text keyfiles. For any given system database, keyfiles can be placed into the
/etc/dconf/db/database.d/ directory. The keyfiles contain groups of settings as follows:

Some useful default settings for our site

[system/proxy/http]

host='172.16.0.1'

enabled=true

[org/gnome/desktop/background]

picture-uri='file:///lusr/local/rupert-corp/company-wallpaper.jpeg'
After changing keyfiles, the database needs to be updated with the dconf(1) tool.

LOCKS

System databases can contain 'locks' for keys. If a lock for a particular key or subpath
is installed into a database then no database listed above that one in the profile will be
able to modify any of the affected settings. This can be used to enforce mandatory
settings.
To add locks to a database, place text files in the /etc/dconf/db/database.d/locks
directory, where database is the name of a system database, as specified in the profile.
The files contain list of keys to lock, on per line. Lines starting with a # are ignored.
Here is an example:

prevent changes to the company wallpaper

/org/gnome/desktop/background/picture-uri

After changing locks, the database needs to be updated with the dconf(1) tool. Page 3/4

PORTABILITY
dconf mostly targets Free Software operating systems. It will theoretically run on Mac OS
but there isn't much point to that (since Mac OS applications want to store preferences in
plist files). It is not possible to use dconf on Windows because of the inability to
rename over a file that's still in use (which is what the dconf-service does on every
write).

API STABILITY
The dconf API is not particularly friendly, and is not guaranteed to be stable. Because of
this and the lack of portability, you almost certainly want to use some sort of wrapper
API around it. The wrapper API used by GTK+ and GNOME applications is GSettings[1], which
is included as part of GLib. GSettings has backends for Windows (using the registry) and
Mac OS (using property lists) as well as its dconf backend and is the proper API to use
for graphical applications.

SEE ALSO
dconf-service(1), dconf-editor(1), dconf(1), GSettings[1]

NOTES
1. GSettings

http://developer.gnome.org/gio/stable/GSettings.html

dconf DCONF(7)

Page 4/4

