FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'deb-control.5'
$ man deb-control.5
deb-control(5) dpkg suite deb-control(5)
NAME
deb-control - Debian binary packages' master control file format
SYNOPSIS
DEBIAN/control
DESCRIPTION
Each Debian binary package contains a control file in its control member, and its
deb822(5) format is a subset of the master debian/control file in Debian source packages,
see deb-src-control(5).
This file contains a number of fields. Each field begins with a tag, such as Package or
Version (case insensitive), followed by a colon, and the body of the field (case sensitive
unless stated otherwise). Fields are delimited only by field tags. In other words, field
text may be multiple lines in length, but the installation tools will generally join lines
when processing the body of the field (except in the case of the Description field, see
below).
FIELDS
Package: package-name (required)
The value of this field determines the package name, and is used to generate file
names by most installation tools.
Package-Type: debjudeb|type
This field defines the type of the package. udeb is for size-constrained packages
used by the debian installer. deb is the default value, it is assumed if the field is

absent. More types might be added in the future. Page 1/8

Version: version-string (required)
Typically, this is the original package's version number in whatever form the
program's author uses. It may also include a Debian revision number (for non-native
packages). The exact format and sorting algorithm are described in deb-version(7).

Maintainer: fullname-email (recommended)
Should be in the format ?Joe Bloggs <jbloggs@foo.com>?, and is typically the person
who created the package, as opposed to the author of the software that was packaged.

Description: short-description (recommended)

long-description
The format for the package description is a short brief summary on the first line
(after the Description field). The following lines should be used as a longer, more
detailed description. Each line of the long description must be preceded by a space,
and blank lines in the long description must contain a single ?.? following the
preceding space.

Section: section
This is a general field that gives the package a category based on the software that
it installs. Some common sections are utils, net, mail, text, x11, etc.

Priority: priority
Sets the importance of this package in relation to the system as a whole. Common
priorities are required, standard, optional, extra, etc.

The Section and Priority fields usually have a defined set of accepted values based on the

specific distribution policy.

Installed-Size: size
The approximate total size of the package's installed files, in KiB units. The
algorithm to compute the size is described in deb-substvars(5).

Protected: yes|no
This field is usually only needed when the answer is yes. It denotes a package that
is required for proper booting of the system. dpkg(1) or any other installation tool
will not allow a Protected package to be removed (at least not without using one of
the force options).
Supported since dpkg 1.20.1.

Essential: yes|no

This field is usually only needed when the answer is yes. It denotes a package that Page 2/8

is required for proper operation of the system. dpkg(1) or any other installation
tool will not allow an Essential package to be removed (at least not without using one
of the force options).
Build-Essential: yes|no
This field is usually only needed when the answer is yes, and is commonly injected by
the archive software. It denotes a package that is required when building other
packages.
Architecture: archjall (required)
The architecture specifies which type of hardware this package was compiled for.
Common architectures are amd64, armel, i386, powerpc, etc. Note that the all value is
meant for packages that are architecture independent. Some examples of this are shell
and Perl scripts, and documentation.
Origin: name
The name of the distribution this package is originating from.
Bugs: url
The url of the bug tracking system for this package. The current used format is bts-
type://bts-address, like debbugs://bugs.debian.org.
Homepage: url
The upstream project home page url.
Tag: tag-list
List of tags describing the qualities of the package. The description and list of
supported tags can be found in the debtags package.
Multi-Arch: no|same|foreign|allowed
This field is used to indicate how this package should behave on a multi-arch
installations.
no This value is the default when the field is omitted, in which case adding the
field with an explicit no value is generally not needed.
same
This package is co-installable with itself, but it must not be used to satisfy the
dependency of any package of a different architecture from itself.
foreign
This package is not co-installable with itself, but should be allowed to satisfy a

non-arch-qualified dependency of a package of a different arch from itself (if a Page 3/8

dependency has an explicit arch-qualifier then the value foreign is ignored).
allowed
This allows reverse-dependencies to indicate in their Depends field that they
accept this package from a foreign architecture by qualifying the package name
with :any, but has no effect otherwise.
Source: source-name [(source-version)]
The name of the source package that this binary package came from, if it is different
than the name of the package itself. If the source version differs from the binary
version, then the source-name will be followed by a source-version in parenthesis.
This can happen for example on a binary-only non-maintainer upload, or when setting a
different binary version via ?dpkg-gencontrol -v?.
Subarchitecture: value
Kernel-Version: value
Installer-Menu-Item: value
These fields are used by the debian-installer and are usually not needed. See
/usr/share/doc/debian-installer/devel/modules.txt from the debian-installer package
for more details about them.
Depends: package-list
List of packages that are required for this package to provide a non-trivial amount of
functionality. The package maintenance software will not allow a package to be
installed if the packages listed in its Depends field aren't installed (at least not
without using the force options). In an installation, the postinst scripts of
packages listed in Depends fields are run before those of the packages which depend on
them. On the opposite, in a removal, the prerm script of a package is run before those
of the packages listed in its Depends field.
Pre-Depends: package-list
List of packages that must be installed and configured before this one can be
installed. This is usually used in the case where this package requires another
package for running its preinst script.
Recommends: package-list
Lists packages that would be found together with this one in all but unusual
installations. The package maintenance software will warn the user if they install a

package without those listed in its Recommends field. Page 4/8

Suggests: package-list
Lists packages that are related to this one and can perhaps enhance its usefulness,
but without which installing this package is perfectly reasonable.
The syntax of Depends, Pre-Depends, Recommends and Suggests fields is a list of groups of
alternative packages. Each group is a list of packages separated by vertical bar (or
?pipe?) symbols, ?|?. The groups are separated by commas. Commas are to be read as
?AND?, and pipes as ?OR?, with pipes binding more tightly. Each package name is
optionally followed by an architecture qualifier appended after a colon ?:?, optionally
followed by a version number specification in parentheses.
An architecture qualifier name can be a real Debian architecture name (since dpkg 1.16.5)
or any (since dpkg 1.16.2). If omitted, the default is the current binary package
architecture. A real Debian architecture name will match exactly that architecture for
that package name, any will match any architecture for that package name if the package
has been marked as Multi-Arch: allowed.
A version number may start with a ?>>?, in which case any later version will match, and
may specify or omit the Debian packaging revision (separated by a hyphen). Accepted
version relationships are ?>>? for greater than, ?<<? for less than, ?>=? for greater than
or equal to, ?<=? for less than or equal to, and ?="? for equal to.
Breaks: package-list
Lists packages that this one breaks, for example by exposing bugs when the named
packages rely on this one. The package maintenance software will not allow broken
packages to be configured; generally the resolution is to upgrade the packages named
in a Breaks field.
Conflicts: package-list
Lists packages that conflict with this one, for example by containing files with the
same names. The package maintenance software will not allow conflicting packages to be
installed at the same time. Two conflicting packages should each include a Conflicts
line mentioning the other.
Replaces: package-list
List of packages files from which this one replaces. This is used for allowing this
package to overwrite the files of another package and is usually used with the
Conflicts field to force removal of the other package, if this one also has the same

files as the conflicted package. Page 5/8

The syntax of Breaks, Conflicts and Replaces is a list of package names, separated by
commas (and optional whitespace). In the Breaks and Conflicts fields, the comma should be
read as 7OR?. An optional architecture qualifier can also be appended to the package name
with the same syntax as above, but the default is any instead of the binary package
architecture. An optional version can also be given with the same syntax as above for the
Breaks, Conflicts and Replaces fields.
Enhances: package-list
This is a list of packages that this one enhances. It is similar to Suggests but in
the opposite direction.
Provides: package-list
This is a list of virtual packages that this one provides. Usually this is used in
the case of several packages all providing the same service. For example, sendmail
and exim can serve as a mail server, so they provide a common package
(?mail-transport-agent?) on which other packages can depend. This will allow sendmail
or exim to serve as a valid option to satisfy the dependency. This prevents the
packages that depend on a mail server from having to know the package names for all of
them, and using ?|? to separate the list.
The syntax of Provides is a list of package names, separated by commas (and optional
whitespace). An optional architecture qualifier can also be appended to the package name
with the same syntax as above. If omitted, the default is the current binary package
architecture. An optional exact (equal to) version can also be given with the same syntax
as above (honored since dpkg 1.17.11).
Built-Using: package-list
This field lists extra source packages that were used during the build of this binary
package. This is an indication to the archive maintenance software that these extra
source packages must be kept whilst this binary package is maintained. This field
must be a list of source package names with strict ?=? version relationships. Note
that the archive maintenance software is likely to refuse to accept an upload which
declares a Built-Using relationship which cannot be satisfied within the archive.
Built-For-Profiles: profile-list (obsolete)
This field used to specify a whitespace separated list of build profiles that this
binary packages was built with (since dpkg 1.17.2 until 1.18.18). The information

previously found in this field can now be found in the .buildinfo file, which

Page 6/8

supersedes it.

Auto-Built-Package: reason-list
This field specifies a whitespace separated list of reasons why this package was auto-
generated. Binary packages marked with this field will not appear in the
debian/control master source control file. The only currently used reason is debug-
symbols.

Build-Ids: elf-build-id-list
This field specifies a whitespace separated list of ELF build-ids. These are unique
identifiers for semantically identical ELF objects, for each of these within the
package.
The format or the way to compute each build-id is not defined by design.

EXAMPLE

Package: grep

Essential: yes

Priority: required

Section: base

Maintainer: Wichert Akkerman <wakkerma@debian.org>

Architecture: sparc

Version: 2.4-1

Pre-Depends: libc6 (>= 2.0.105)

Provides: rgrep

Conflicts: rgrep

Description: GNU grep, egrep and fgrep.

The GNU family of grep utilities may be the "fastest grep in the west".

GNU grep is based on a fast lazy-state deterministic matcher (about

twice as fast as stock Unix egrep) hybridized with a Boyer-Moore-Gosper

search for a fixed string that eliminates impossible text from being

considered by the full regexp matcher without necessarily having to

look at every character. The result is typically many times faster

than Unix grep or egrep. (Regular expressions containing backreferencing

will run more slowly, however).

BUGS

The Build-1ds field uses a rather generic name out of its original context within an ELF Page 7/8

object, which serves a very specific purpose and executable format.
SEE ALSO
deb822(5), deb-src-control(5), deb(5), deb-version(7), debtags(1), dpkg(1), dpkg-deb(1).

1211 2024-02-23 deb-control(5)

Page 8/8

