
Rocky Enterprise Linux 9.2 Manual Pages on command 'deb-src-symbols.5'

$ man deb-src-symbols.5

deb-src-symbols(5) dpkg suite deb-src-symbols(5)

NAME

 deb-src-symbols - Debian's extended shared library template file

SYNOPSIS

 debian/package.symbols.arch, debian/symbols.arch, debian/package.symbols, debian/symbols

DESCRIPTION

 The symbol file templates are shipped in Debian source packages, and its format is a

 superset of the symbols files shipped in binary packages, see deb-symbols(5).

 Comments

 Comments are supported in template symbol files. Any line with ?#? as the first character

 is a comment except if it starts with ?#include? (see section Using includes). Lines

 starting with ?#MISSING:? are special comments documenting symbols that have disappeared.

 Using #PACKAGE# substitution

 In some rare cases, the name of the library varies between architectures. To avoid

 hardcoding the name of the package in the symbols file, you can use the marker #PACKAGE#.

 It will be replaced by the real package name during installation of the symbols files.

 Contrary to the #MINVER# marker, #PACKAGE# will never appear in a symbols file inside a

 binary package.

 Using symbol tags

 Symbol tagging is useful for marking symbols that are special in some way. Any symbol can

 have an arbitrary number of tags associated with it. While all tags are parsed and stored,

 only some of them are understood by dpkg-gensymbols and trigger special handling of the

 symbols. See subsection Standard symbol tags for reference of these tags. Page 1/8

 Tag specification comes right before the symbol name (no whitespace is allowed in

 between). It always starts with an opening bracket (, ends with a closing bracket) and

 must contain at least one tag. Multiple tags are separated by the | character. Each tag

 can optionally have a value which is separated form the tag name by the = character. Tag

 names and values can be arbitrary strings except they cannot contain any of the special)

 | = characters. Symbol names following a tag specification can optionally be quoted with

 either ' or " characters to allow whitespaces in them. However, if there are no tags

 specified for the symbol, quotes are treated as part of the symbol name which continues up

 until the first space.

 (tag1=i am marked|tag name with space)"tagged quoted symbol"@Base 1.0

 (optional)tagged_unquoted_symbol@Base 1.0 1

 untagged_symbol@Base 1.0

 The first symbol in the example is named tagged quoted symbol and has two tags: tag1 with

 value i am marked and tag name with space that has no value. The second symbol named

 tagged_unquoted_symbol is only tagged with the tag named optional. The last symbol is an

 example of the normal untagged symbol.

 Since symbol tags are an extension of the deb-symbols(5) format, they can only be part of

 the symbols files used in source packages (those files should then be seen as templates

 used to build the symbols files that are embedded in binary packages). When dpkg-

 gensymbols is called without the -t option, it will output symbols files compatible to the

 deb-symbols(5) format: it fully processes symbols according to the requirements of their

 standard tags and strips all tags from the output. On the contrary, in template mode (-t)

 all symbols and their tags (both standard and unknown ones) are kept in the output and are

 written in their original form as they were loaded.

 Standard symbol tags

 optional

 A symbol marked as optional can disappear from the library at any time and that will

 never cause dpkg-gensymbols to fail. However, disappeared optional symbols will

 continuously appear as MISSING in the diff in each new package revision. This

 behaviour serves as a reminder for the maintainer that such a symbol needs to be

 removed from the symbol file or readded to the library. When the optional symbol,

 which was previously declared as MISSING, suddenly reappears in the next revision, it

 will be upgraded back to the ?existing? status with its minimum version unchanged. Page 2/8

 This tag is useful for symbols which are private where their disappearance do not

 cause ABI breakage. For example, most of C++ template instantiations fall into this

 category. Like any other tag, this one may also have an arbitrary value: it could be

 used to indicate why the symbol is considered optional.

 arch=architecture-list

 arch-bits=architecture-bits

 arch-endian=architecture-endianness

 These tags allow one to restrict the set of architectures where the symbol is supposed

 to exist. The arch-bits and arch-endian tags are supported since dpkg 1.18.0. When the

 symbols list is updated with the symbols discovered in the library, all arch-specific

 symbols which do not concern the current host architecture are treated as if they did

 not exist. If an arch-specific symbol matching the current host architecture does not

 exist in the library, normal procedures for missing symbols apply and it may cause

 dpkg-gensymbols to fail. On the other hand, if the arch-specific symbol is found when

 it was not supposed to exist (because the current host architecture is not listed in

 the tag or does not match the endianness and bits), it is made arch neutral (i.e. the

 arch, arch-bits and arch-endian tags are dropped and the symbol will appear in the

 diff due to this change), but it is not considered as new.

 When operating in the default non-template mode, among arch-specific symbols only

 those that match the current host architecture are written to the symbols file. On the

 contrary, all arch-specific symbols (including those from foreign arches) are always

 written to the symbol file when operating in template mode.

 The format of architecture-list is the same as the one used in the Build-Depends field

 of debian/control (except the enclosing square brackets []). For example, the first

 symbol from the list below will be considered only on alpha, any-amd64 and ia64

 architectures, the second only on linux architectures, while the third one anywhere

 except on armel.

 (arch=alpha any-amd64 ia64)64bit_specific_symbol@Base 1.0

 (arch=linux-any)linux_specific_symbol@Base 1.0

 (arch=!armel)symbol_armel_does_not_have@Base 1.0

 The architecture-bits is either 32 or 64.

 (arch-bits=32)32bit_specific_symbol@Base 1.0

 (arch-bits=64)64bit_specific_symbol@Base 1.0 Page 3/8

 The architecture-endianness is either little or big.

 (arch-endian=little)little_endian_specific_symbol@Base 1.0

 (arch-endian=big)big_endian_specific_symbol@Base 1.0

 Multiple restrictions can be chained.

 (arch-bits=32|arch-endian=little)32bit_le_symbol@Base 1.0

 allow-internal

 dpkg-gensymbols has a list of internal symbols that should not appear in symbols files

 as they are usually only side-effects of implementation details of the toolchain

 (since dpkg 1.20.1). If for some reason, you really want one of those symbols to be

 included in the symbols file, you should tag the symbol with allow-internal. It can

 be necessary for some low level toolchain libraries like ?libgcc?.

 ignore-blacklist

 A deprecated alias for allow-internal (since dpkg 1.20.1, supported since dpkg

 1.15.3).

 c++ Denotes c++ symbol pattern. See Using symbol patterns subsection below.

 symver

 Denotes symver (symbol version) symbol pattern. See Using symbol patterns subsection

 below.

 regex

 Denotes regex symbol pattern. See Using symbol patterns subsection below.

 Using symbol patterns

 Unlike a standard symbol specification, a pattern may cover multiple real symbols from the

 library. dpkg-gensymbols will attempt to match each pattern against each real symbol that

 does not have a specific symbol counterpart defined in the symbol file. Whenever the first

 matching pattern is found, all its tags and properties will be used as a basis

 specification of the symbol. If none of the patterns matches, the symbol will be

 considered as new.

 A pattern is considered lost if it does not match any symbol in the library. By default

 this will trigger a dpkg-gensymbols failure under -c1 or higher level. However, if the

 failure is undesired, the pattern may be marked with the optional tag. Then if the pattern

 does not match anything, it will only appear in the diff as MISSING. Moreover, like any

 symbol, the pattern may be limited to the specific architectures with the arch tag. Please

 refer to Standard symbol tags subsection above for more information. Page 4/8

 Patterns are an extension of the deb-symbols(5) format hence they are only valid in symbol

 file templates. Pattern specification syntax is not any different from the one of a

 specific symbol. However, symbol name part of the specification serves as an expression to

 be matched against name@version of the real symbol. In order to distinguish among

 different pattern types, a pattern will typically be tagged with a special tag.

 At the moment, dpkg-gensymbols supports three basic pattern types:

 c++ This pattern is denoted by the c++ tag. It matches only C++ symbols by their demangled

 symbol name (as emitted by c++filt(1) utility). This pattern is very handy for

 matching symbols which mangled names might vary across different architectures while

 their demangled names remain the same. One group of such symbols is non-virtual thunks

 which have architecture specific offsets embedded in their mangled names. A common

 instance of this case is a virtual destructor which under diamond inheritance needs a

 non-virtual thunk symbol. For example, even if _ZThn8_N3NSB6ClassDD1Ev@Base on 32bit

 architectures will probably be _ZThn16_N3NSB6ClassDD1Ev@Base on 64bit ones, it can be

 matched with a single c++ pattern:

 libdummy.so.1 libdummy1 #MINVER#

 [...]

 (c++)"non-virtual thunk to NSB::ClassD::~ClassD()@Base" 1.0

 [...]

 The demangled name above can be obtained by executing the following command:

 $ echo '_ZThn8_N3NSB6ClassDD1Ev@Base' | c++filt

 Please note that while mangled name is unique in the library by definition, this is

 not necessarily true for demangled names. A couple of distinct real symbols may have

 the same demangled name. For example, that's the case with non-virtual thunk symbols

 in complex inheritance configurations or with most constructors and destructors (since

 g++ typically generates two real symbols for them). However, as these collisions

 happen on the ABI level, they should not degrade quality of the symbol file.

 symver

 This pattern is denoted by the symver tag. Well maintained libraries have versioned

 symbols where each version corresponds to the upstream version where the symbol got

 added. If that's the case, you can use a symver pattern to match any symbol associated

 to the specific version. For example:

 libc.so.6 libc6 #MINVER# Page 5/8

 (symver)GLIBC_2.0 2.0

 [...]

 (symver)GLIBC_2.7 2.7

 access@GLIBC_2.0 2.2

 All symbols associated with versions GLIBC_2.0 and GLIBC_2.7 will lead to minimal

 version of 2.0 and 2.7 respectively with the exception of the symbol access@GLIBC_2.0.

 The latter will lead to a minimal dependency on libc6 version 2.2 despite being in the

 scope of the "(symver)GLIBC_2.0" pattern because specific symbols take precedence over

 patterns.

 Please note that while old style wildcard patterns (denoted by "*@version" in the

 symbol name field) are still supported, they have been deprecated by new style syntax

 "(symver|optional)version". For example, "*@GLIBC_2.0 2.0" should be written as

 "(symver|optional)GLIBC_2.0 2.0" if the same behaviour is needed.

 regex

 Regular expression patterns are denoted by the regex tag. They match by the perl

 regular expression specified in the symbol name field. A regular expression is matched

 as it is, therefore do not forget to start it with the ^ character or it may match any

 part of the real symbol name@version string. For example:

 libdummy.so.1 libdummy1 #MINVER#

 (regex)"^mystack_.*@Base$" 1.0

 (regex|optional)"private" 1.0

 Symbols like "mystack_new@Base", "mystack_push@Base", "mystack_pop@Base" etc. will be

 matched by the first pattern while e.g. "ng_mystack_new@Base" won't. The second

 pattern will match all symbols having the string "private" in their names and matches

 will inherit optional tag from the pattern.

 Basic patterns listed above can be combined where it makes sense. In that case, they are

 processed in the order in which the tags are specified. For example, both:

 (c++|regex)"^NSA::ClassA::Private::privmethod\d\(int\)@Base" 1.0

 (regex|c++)N3NSA6ClassA7Private11privmethod\dEi@Base 1.0

 will match symbols "_ZN3NSA6ClassA7Private11privmethod1Ei@Base" and

 "_ZN3NSA6ClassA7Private11privmethod2Ei@Base". When matching the first pattern, the raw

 symbol is first demangled as C++ symbol, then the demangled name is matched against the

 regular expression. On the other hand, when matching the second pattern, regular Page 6/8

 expression is matched against the raw symbol name, then the symbol is tested if it is C++

 one by attempting to demangle it. A failure of any basic pattern will result in the

 failure of the whole pattern. Therefore, for example,

 "__N3NSA6ClassA7Private11privmethod\dEi@Base" will not match either of the patterns

 because it is not a valid C++ symbol.

 In general, all patterns are divided into two groups: aliases (basic c++ and symver) and

 generic patterns (regex, all combinations of multiple basic patterns). Matching of basic

 alias-based patterns is fast (O(1)) while generic patterns are O(N) (N - generic pattern

 count) for each symbol. Therefore, it is recommended not to overuse generic patterns.

 When multiple patterns match the same real symbol, aliases (first c++, then symver) are

 preferred over generic patterns. Generic patterns are matched in the order they are found

 in the symbol file template until the first success. Please note, however, that manual

 reordering of template file entries is not recommended because dpkg-gensymbols generates

 diffs based on the alphanumerical order of their names.

 Using includes

 When the set of exported symbols differ between architectures, it may become inefficient

 to use a single symbol file. In those cases, an include directive may prove to be useful

 in a couple of ways:

 ? You can factorize the common part in some external file and include that file in your

 package.symbols.arch file by using an include directive like this:

 #include "I<packages>.symbols.common"

 ? The include directive may also be tagged like any symbol:

 (tag|...|tagN)#include "file-to-include"

 As a result, all symbols included from file-to-include will be considered to be tagged

 with tag ... tagN by default. You can use this feature to create a common

 package.symbols file which includes architecture specific symbol files:

 common_symbol1@Base 1.0

 (arch=amd64 ia64 alpha)#include "package.symbols.64bit"

 (arch=!amd64 !ia64 !alpha)#include "package.symbols.32bit"

 common_symbol2@Base 1.0

 The symbols files are read line by line, and include directives are processed as soon as

 they are encountered. This means that the content of the included file can override any

 content that appeared before the include directive and that any content after the Page 7/8

 directive can override anything contained in the included file. Any symbol (or even

 another #include directive) in the included file can specify additional tags or override

 values of the inherited tags in its tag specification. However, there is no way for the

 symbol to remove any of the inherited tags.

 An included file can repeat the header line containing the SONAME of the library. In that

 case, it overrides any header line previously read. However, in general it's best to

 avoid duplicating header lines. One way to do it is the following:

 #include "libsomething1.symbols.common"

 arch_specific_symbol@Base 1.0

SEE ALSO

 deb-symbols(5), dpkg-shlibdeps(1), dpkg-gensymbols(1).

1.21.1 2024-02-23 deb-src-symbols(5)

Page 8/8

