PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'dladdr1.3'

$ man dladdr1.3
DLADDR(3) Linux Programmer's Manual DLADDR(3)
NAME

dladdr, dladdrl - translate address to symbolic information
SYNOPSIS

#define _GNU_SOURCE

#include <dlIfcn.h>

int dladdr(void *addr, DI_info *info);

int dladdr1(void *addr, DI_info *info, void **extra_info, int flags);

Link with -Idl.

DESCRIPTION

The function dladdr() determines whether the address specified in addr is located in one
of the shared objects loaded by the calling application. If it is, then dladdr() returns
information about the shared object and symbol that overlaps addr. This information is
returned in a DI_info structure:
typedef struct {
const char *dli_fname; /* Pathname of shared object that
contains address */
void *dli_fbase; /* Base address at which shared
object is loaded */
const char *dli_sname; /* Name of symbol whose definition
overlaps addr */
void *dli_saddr; /* Exact address of symbol named

in dli_sname */ Page 1/5

} DL_info;

If no symbol matching addr could be found, then dli_sname and dli_saddr are set to NULL.

The function dladdri() is like dladdr(), but returns additional information via the argu?

ment extra_info. The information returned depends on the value specified in flags, which

can have one of the following values:
RTLD_DL_LINKMAP
Obtain a pointer to the link map for the matched file. The extra_info argument
points to a pointer to a link_map structure (i.e., struct link_map **), defined in
<link.h> as:
struct link_map {
EIfW(Addr) |_addr; /* Difference between the
address in the ELF file and
the address in memory */
char *I_name; /* Absolute pathname where
object was found */
EIfW(Dyn) *I_Id; /* Dynamic section of the
shared object */
struct link_map *I_next, *I_prev;
[* Chain of loaded objects */
/* Plus additional fields private to the
implementation */
h
RTLD_DL_SYMENT
Obtain a pointer to the ELF symbol table entry of the matching symbol. The ex?
tra_info argument is a pointer to a symbol pointer: const EIfW(Sym) **. The EIfW()
macro definition turns its argument into the name of an ELF data type suitable for
the hardware architecture. For example, on a 64-bit platform, EIfW(Sym) yields the
data type name EIf64_Sym, which is defined in <elf.h> as:
typedef struct {
Elf64_Word st name; /* Symbol name */
unsigned char st_info; /* Symbol type and binding */
unsigned char st_other; /* Symbol visibility */

EIf64_Section st_shndx; /* Section index */

Page 2/5

ElIf64_Addr st value; /* Symbol value */
ElIf64_Xword st_size; /* Symbol size */

} EIf64_Sym;
The st_name field is an index into the string table.
The st_info field encodes the symbol's type and binding. The type can be extracted
using the macro ELF64_ST _TYPE(st_info) (or ELF32_ST_TYPE() on 32-bit platforms),
which yields one of the following values:

Value Description

STT_NOTYPE Symbol type is unspecified

STT_OBJECT Symbol is a data object

STT_FUNC Symbol is a code object

STT_SECTION Symbol associated with a section

STT_FILE Symbol's name is filename

STT_COMMON Symbol is a common data object

STT_TLS Symbol is thread-local data object

STT_GNU_IFUNC Symbol is indirect code object
The symbol binding can be extracted from the st info field using the macro
ELF64_ST_BIND(st_info) (or ELF32_ST_BIND() on 32-bit platforms), which yields one
of the following values:

Value Description

STB_LOCAL Local symbol

STB_GLOBAL Global symbol

STB_WEAK Weak symbol

STB_GNU_UNIQUE Unique symbol
The st_other field contains the symbol's visibility, which can be extracted using
the macro ELF64_ST_VISIBILITY(st_info) (or ELF32_ST_VISIBILITY() on 32-bit plat?
forms), which yields one of the following values:

Value Description

STV_DEFAULT Default symbol visibility rules

STV_INTERNAL Processor-specific hidden class

STV_HIDDEN Symbol unavailable in other modules

STV_PROTECTED Not preemptible, not exported

RETURN VALUE

Page 3/5

On success, these functions return a nonzero value. If the address specified in addr
could be matched to a shared object, but not to a symbol in the shared object, then the
info->dli_sname and info->dli_saddr fields are set to NULL.
If the address specified in addr could not be matched to a shared object, then these func?
tions return 0. In this case, an error message is not available via dlerror(3).
VERSIONS
dladdr() is present in glibc 2.0 and later. dladdri() first appeared in glibc 2.3.3.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 7?7?77??77?7?77?7???7?7?7?7?7?7?7

?Interface ? Attribute ? Value ?

PPV 7?7?77??77?7?77?7???7?77?7??7?7

?dladdr(), dladdr1() ? Thread safety ? MT-Safe ?

PPV 2?772??7?7?77??77?7?77?7???7?77?7??7?7

CONFORMING TO
These functions are nonstandard GNU extensions that are also present on Solaris.

BUGS
Sometimes, the function pointers you pass to dladdr() may surprise you. On some architec?
tures (notably i386 and x86-64), dli_fname and dli_fbase may end up pointing back at the
object from which you called dladdr(), even if the function used as an argument should
come from a dynamically linked library.
The problem is that the function pointer will still be resolved at compile time, but
merely point to the plt (Procedure Linkage Table) section of the original object (which
dispatches the call after asking the dynamic linker to resolve the symbol). To work
around this, you can try to compile the code to be position-independent: then, the com?
piler cannot prepare the pointer at compile time any more and gcc(1) will generate code
that just loads the final symbol address from the got (Global Offset Table) at run time
before passing it to dladdr().

SEE ALSO
dl_iterate_phdr(3), dlinfo(3), dlopen(3), dlsym(3), Id.so(8)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the

project, information about reporting bugs, and the latest version of this page, can be Page 4/5

found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 DLADDR(3)

Page 5/5

