FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'dpkg-source.l’
$ man dpkg-source.1
dpkg-source(1) dpkg suite dpkg-source(1)
NAME
dpkg-source - Debian source package (.dsc) manipulation tool
SYNOPSIS
dpkg-source [option...] command
DESCRIPTION
dpkg-source packs and unpacks Debian source archives.
None of these commands allow multiple options to be combined into one, and they do not
allow the value for an option to be specified in a separate argument.
COMMANDS
-X, --extract filename.dsc [output-directory]
Extract a source package (--extract since dpkg 1.17.14). One non-option argument must
be supplied, the name of the Debian source control file (.dsc). An optional second
non-option argument may be supplied to specify the directory to extract the source
package to, this must not exist. If no output directory is specified, the source
package is extracted into a directory named source-version under the current working
directory.
dpkg-source will read the names of the other file(s) making up the source package from
the control file; they are assumed to be in the same directory as the .dsc.
The files in the extracted package will have their permissions and ownerships set to
those which would have been expected if the files and directories had simply been
created - directories and executable files will be 0777 and plain files will be 0666,

both modified by the extractors' umask; if the parent directory is setgid then the Page 1/17

extracted directories will be too, and all the files and directories will inherit its
group ownership.
If the source package uses a non-standard format (currently this means all formats
except ?1.0?), its name will be stored in debian/source/format so that the following
builds of the source package use the same format by default.

-b, --build directory [format-specific-parameters]
Build a source package (--build since dpkg 1.17.14). The first non-option argument is
taken as the name of the directory containing the debianized source tree (i.e. with a
debian sub-directory and maybe changes to the original files). Depending on the
source package format used to build the package, additional parameters might be
accepted.
dpkg-source will build the source package with the first format found in this ordered
list: the format indicated with the --format command line option, the format indicated
in debian/source/format, ?1.0?. The fallback to ?1.0? is deprecated and will be
removed at some point in the future, you should always document the desired source
format in debian/source/format. See section SOURCE PACKAGE FORMATS for an extensive
description of the various source package formats.

--print-format directory
Print the source format that would be used to build the source package if dpkg-source
--build directory was called (in the same conditions and with the same parameters;
since dpkg 1.15.5).

--before-build directory
Run the corresponding hook of the source package format (since dpkg 1.15.8). This
hook is called before any build of the package (dpkg-buildpackage calls it very early
even before debian/rules clean). This command is idempotent and can be called multiple
times. Not all source formats implement something in this hook, and those that do
usually prepare the source tree for the build for example by ensuring that the Debian
patches are applied.

--after-build directory
Run the corresponding hook of the source package format (since dpkg 1.15.8). This
hook is called after any build of the package (dpkg-buildpackage calls it last). This
command is idempotent and can be called multiple times. Not all source formats

implement something in this hook, and those that do usually use it to undo what Page 2/17

--before-build has done.

--commit [directory] ...
Record changes in the source tree unpacked in directory (since dpkg 1.16.1). This
command can take supplementary parameters depending on the source format. It will
error out for formats where this operation doesn't mean anything.

-?, --help
Show the usage message and exit. The format specific build and extract options can be
shown by using the --format option.

--version
Show the version and exit.

OPTIONS
Generic build options

-ccontrol-file
Specifies the main source control file to read information from. The default is
debian/control. If given with relative pathname this is interpreted starting at the
source tree's top level directory.

-lchangelog-file
Specifies the changelog file to read information from. The default is
debian/changelog. If given with relative pathname this is interpreted starting at the
source tree's top level directory.

-Fchangelog-format
Specifies the format of the changelog. See dpkg-parsechangelog(l) for information
about alternative formats.

--format=value
Use the given format for building the source package (since dpkg 1.14.17). It does
override any format given in debian/source/format.

-Vname=value
Set an output substitution variable. See deb-substvars(5) for a discussion of output
substitution.

-Tsubstvars-file
Read substitution variables in substvars-file; the default is to not read any file.
This option can be used multiple times to read substitution variables from multiple

files (since dpkg 1.15.6). Page 3/17

-Dfield=value
Override or add an output control file field.

-Ufield
Remove an output control file field.

-Zcompression, --compression=compression
Specify the compression to use for created tarballs and diff files (--compression
since dpkg 1.15.5). Note that this option will not cause existing tarballs to be
recompressed, it only affects new files. Supported values are: gzip, bzip2, Izma and
xz. The default is xz for formats 2.0 and newer, and gzip for format 1.0. xz is only
supported since dpkg 1.15.5.

-zlevel, --compression-level=level
Compression level to use (--compression-level since dpkg 1.15.5). As with -Z it only
affects newly created files. Supported values are: 1 to 9, best, and fast. The
default is 9 for gzip and bzip2, 6 for xz and Izma.

-i[regex], --diff-ignore[=regex]
You may specify a perl regular expression to match files you want filtered out of the
list of files for the diff (--diff-ignore since dpkg 1.15.6). (This list is generated
by a find command.) (If the source package is being built as a version 3 source
package using a VCS, this can be used to ignore uncommitted changes on specific files.
Using -i.* will ignore all of them.)
The -i option by itself enables this setting with a default regex (preserving any
modification to the default regex done by a previous use of --extend-diff-ignore) that
will filter out control files and directories of the most common revision control
systems, backup and swap files and Libtool build output directories. There can only be
one active regex, of multiple -i options only the last one will take effect.
This is very helpful in cutting out extraneous files that get included in the diff,
e.g. if you maintain your source in a revision control system and want to use a
checkout to build a source package without including the additional files and
directories that it will usually contain (e.g. CVS/, .cvsignore, .svn/). The default
regex is already very exhaustive, but if you need to replace it, please note that by
default it can match any part of a path, so if you want to match the begin of a
filename or only full filenames, you will need to provide the necessary anchors (e.g.

?2MNN?, ?($)/)?) yourself. Page 4/17

--extend-diff-ignore=regex
The perl regular expression specified will extend the default value used by
--diff-ignore and its current value, if set (since dpkg 1.15.6). It does this by
concatenating ?|regex? to the existing value. This option is convenient to use in
debian/source/options to exclude some auto-generated files from the automatic patch
generation.
-I[file-pattern], --tar-ignore[=file-pattern]
If this option is specified, the pattern will be passed to tar(1)'s --exclude option
when it is called to generate a .orig.tar or .tar file (--tar-ignore since dpkg
1.15.6). For example, -ICVS will make tar skip over CVS directories when generating a
.tar.gz file. The option may be repeated multiple times to list multiple patterns to
exclude.
-1 by itself adds default --exclude options that will filter out control files and
directories of the most common revision control systems, backup and swap files and
Libtool build output directories.
Note: While they have similar purposes, -i and -I have very different syntax and
semantics. -i can only be specified once and takes a perl compatible regular expression
which is matched against the full relative path of each file. -I can specified multiple
times and takes a filename pattern with shell wildcards. The pattern is applied to the
full relative path but also to each part of the path individually. The exact semantic of
tar's --exclude option is somewhat complicated, see
<https://www.gnu.org/software/tar/manual/tar.html#wildcards> for a full documentation.
The default regex and patterns for both options can be seen in the output of the --help
command.
Generic extract options
--no-copy
Do not copy original tarballs near the extracted source package (since dpkg 1.14.17).
--no-check
Do not check signatures and checksums before unpacking (since dpkg 1.14.17).
--no-overwrite-dir
Do not overwrite the extraction directory if it already exists (since dpkg 1.18.8).
--require-valid-signature

Refuse to unpack the source package if it doesn't contain an OpenPGP signature that Page 5/17

can be verified (since dpkg 1.15.0) either with the user's trustedkeys.gpg keyring,
one of the vendor-specific keyrings, or one of the official Debian keyrings
(/usr/share/keyrings/debian-keyring.gpg, /usr/share/keyrings/debian-nonupload.gpg and
lusr/share/keyrings/debian-maintainers.gpg).
--require-strong-checksums
Refuse to unpack the source package if it does not contain any strong checksums (since
dpkg 1.18.7). Currently the only known checksum considered strong is SHA-256.
--ignore-bad-version
Turns the bad source package version check into a non-fatal warning (since dpkg
1.17.7). This option should only be necessary when extracting ancient source packages
with broken versions, just for backwards compatibility.
SOURCE PACKAGE FORMATS
If you don't know what source format to use, you should probably pick either ?3.0 (quilt)?
or ?3.0 (native)?. See <https://wiki.debian.org/Projects/DebSrc3.0> for information on
the deployment of those formats within Debian.
Format: 1.0
A source package in this format consists either of a .orig.tar.gz associated to a .diff.gz
or a single .tar.gz (in that case the package is said to be native). Optionally the
original tarball might be accompanied by a detached upstream signature .orig.tar.gz.asc,
extraction supported since dpkg 1.18.5.
Extracting
Extracting a native package is a simple extraction of the single tarball in the target
directory. Extracting a non-native package is done by first unpacking the .orig.tar.gz and
then applying the patch contained in the .diff.gz file. The timestamp of all patched files
is reset to the extraction time of the source package (this avoids timestamp skews leading
to problems when autogenerated files are patched). The diff can create new files (the
whole debian directory is created that way) but cannot remove files (empty files will be
left over) and cannot create or change symlinks.
Building
Building a native package is just creating a single tarball with the source directory.
Building a non-native package involves extracting the original tarball in a separate
?.orig? directory and regenerating the .diff.gz by comparing the source package directory

with the .orig directory. Page 6/17

Build options (with --build):

If a second non-option argument is supplied it should be the name of the original source

directory or tarfile or the empty string if the package is a Debian-specific one and so

has no debianization diffs. If no second argument is supplied then dpkg-source will look
for the original source tarfile package_upstream-version.orig.tar.gz or the original
source directory directory.orig depending on the -sX arguments.

-sa, -sp, -sk, -su and -sr will not overwrite existing tarfiles or directories. If this is

desired then -sA, -sP, -sK, -sU and -sR should be used instead.

-sk Specifies to expect the original source as a tarfile, by default package_upstream-
version.orig.tar.extension. It will leave this original source in place as a tarfile,
or copy it to the current directory if it isn't already there. The tarball will be
unpacked into directory.orig for the generation of the diff.

-sp Like -sk but will remove the directory again afterwards.

-su Specifies that the original source is expected as a directory, by default
package-upstream-version.orig and dpkg-source will create a new original source
archive from it.

-sr Like -su but will remove that directory after it has been used.

-ss Specifies that the original source is available both as a directory and as a tarfile.
dpkg-source will use the directory to create the diff, but the tarfile to create the
.dsc. This option must be used with care - if the directory and tarfile do not match
a bad source archive will be generated.

-sn Specifies to not look for any original source, and to not generate a diff. The second
argument, if supplied, must be the empty string. This is used for Debian-specific
packages which do not have a separate upstream source and therefore have no
debianization diffs.

-sa or -sA
Specifies to look for the original source archive as a tarfile or as a directory - the
second argument, if any, may be either, or the empty string (this is equivalent to
using -sn). If a tarfile is found it will unpack it to create the diff and remove it
afterwards (this is equivalent to -sp); if a directory is found it will pack it to
create the original source and remove it afterwards (this is equivalent to -sr); if
neither is found it will assume that the package has no debianization diffs, only a

straightforward source archive (this is equivalent to -sn). If both are found then Page 7/17

dpkg-source will ignore the directory, overwriting it, if -sA was specified (this is
equivalent to -sP) or raise an error if -sa was specified. -sa is the default.
--abort-on-upstream-changes
The process fails if the generated diff contains changes to files outside of the
debian sub-directory (since dpkg 1.15.8). This option is not allowed in
debian/source/options but can be used in debian/source/local-options.
Extract options (with --extract):
In all cases any existing original source tree will be removed.
-sp Used when extracting then the original source (if any) will be left as a tarfile. If
it is not already located in the current directory or if an existing but different
file is there it will be copied there. (This is the default).
-su Unpacks the original source tree.
-sn Ensures that the original source is neither copied to the current directory nor
unpacked. Any original source tree that was in the current directory is still removed.
All the -sX options are mutually exclusive. If you specify more than one only the last one
will be used.
--skip-debianization
Skips application of the debian diff on top of the upstream sources (since dpkg
1.15.1).
Format: 2.0
Extraction supported since dpkg 1.13.9, building supported since dpkg 1.14.8. Also known
as wigé&pen. This format is not recommended for wide-spread usage, the format ?3.0 (quilt)?
replaces it. Wig&pen was the first specification of a new-generation source package
format.
The behaviour of this format is the same as the ?3.0 (quilt)? format except that it
doesn't use an explicit list of patches. All files in debian/patches/ matching the perl
regular expression [\w-]+ must be valid patches: they are applied at extraction time.
When building a new source package, any change to the upstream source is stored in a patch
named zz_debian-diff-auto.
Format: 3.0 (native)
Supported since dpkg 1.14.17. This format is an extension of the native package format as
defined in the 1.0 format. It supports all compression methods and will ignore by default

any VCS specific files and directories as well as many temporary files (see default value Page 8/17

associated to -l option in the --help output).

Format: 3.0 (quilt)
Supported since dpkg 1.14.17. A source package in this format contains at least an
original tarball (.orig.tar.ext where ext can be gz, bz2, Izma and xz) and a debian
tarball (.debian.tar.ext). It can also contain additional original tarballs
(.orig-component.tar.ext). component can only contain alphanumeric (?a-zA-Z0-97?)
characters and hyphens (?-?). Optionally each original tarball can be accompanied by a
detached upstream signature (.orig.tar.ext.asc and .orig-component.tar.ext.asc),
extraction supported since dpkg 1.17.20, building supported since dpkg 1.18.5.
Extracting
The main original tarball is extracted first, then all additional original tarballs are
extracted in subdirectories named after the component part of their filename (any pre-
existing directory is replaced). The debian tarball is extracted on top of the source
directory after prior removal of any pre-existing debian directory. Note that the debian
tarball must contain a debian sub-directory but it can also contain binary files outside
of that directory (see --include-binaries option).
All patches listed in debian/patches/vendor.series or debian/patches/series are then
applied, where vendor will be the lowercase name of the current vendor, or debian if there
is no vendor defined. If the former file is used and the latter one doesn't exist (or is
a symlink), then the latter is replaced with a symlink to the former. This is meant to
simplify usage of quilt to manage the set of patches. Vendor-specific series files are
intended to make it possible to serialize multiple development branches based on the
vendor, in a declarative way, in preference to open-coding this handling in debian/rules.
This is particularly useful when the source would need to be patched conditionally because
the affected files do not have built-in conditional occlusion support. Note however that
while dpkg-source parses correctly series files with explicit options used for patch
application (stored on each line after the patch filename and one or more spaces), it does
ignore those options and always expects patches that can be applied with the -p1 option of
patch. It will thus emit a warning when it encounters such options, and the build is
likely to fail.
Note that lintian(1) will emit unconditional warnings when using vendor series due to a
controversial Debian specific ruling, which should not affect any external usage; to

silence these, the dpkg lintian profile can be used by passing ?--profile dpkg? to Page 9/17

lintian(1).

The timestamp of all patched files is reset to the extraction time of the source package

(this avoids timestamp skews leading to problems when autogenerated files are patched).

Contrary to quilt's default behaviour, patches are expected to apply without any fuzz.
When that is not the case, you should refresh such patches with quilt, or dpkg-source will
error out while trying to apply them.

Similarly to quilt's default behaviour, the patches can remove files too.

The file .pc/applied-patches is created if some patches have been applied during the
extraction.

Building

All original tarballs found in the current directory are extracted in a temporary

directory by following the same logic as for the unpack, the debian directory is copied
over in the temporary directory, and all patches except the automatic patch
(debian-changes-version or debian-changes, depending on --single-debian-patch) are
applied. The temporary directory is compared to the source package directory. When the
diff is non-empty, the build fails unless --single-debian-patch or --auto-commit has been
used, in which case the diff is stored in the automatic patch. If the automatic patch is
created/deleted, it's added/removed from the series file and from the quilt metadata.

Any change on a binary file is not representable in a diff and will thus lead to a failure
unless the maintainer deliberately decided to include that modified binary file in the
debian tarball (by listing it in debian/source/include-binaries). The build will also fail

if it finds binary files in the debian sub-directory unless they have been allowed through
debian/source/include-binaries.

The updated debian directory and the list of modified binaries is then used to generate
the debian tarball.

The automatically generated diff doesn't include changes on VCS specific files as well as
many temporary files (see default value associated to -i option in the --help output). In
particular, the .pc directory used by quilt is ignored during generation of the automatic
patch.

Note: dpkg-source --before-build (and --build) will ensure that all patches listed in the
series file are applied so that a package build always has all patches applied. It does
this by finding unapplied patches (they are listed in the series file but not in

.pc/applied-patches), and if the first patch in that set can be applied without errors, it

Page 10/17

will apply them all. The option --no-preparation can be used to disable this behavior.
Recording changes
--commit [directory] [patch-name] [patch-file]
Generates a patch corresponding to the local changes that are not managed by the quilt
patch system and integrates it in the patch system under the name patch-name. If the
name is missing, it will be asked interactively. If patch-file is given, it is used as
the patch corresponding to the local changes to integrate. Once integrated, an editor
is launched so that you can edit the meta-information in the patch header.
Passing patch-file is mainly useful after a build failure that pre-generated this
file, and on this ground the given file is removed after integration. Note also that
the changes contained in the patch file must already be applied on the tree and that
the files modified by the patch must not have supplementary unrecorded changes.
If the patch generation detects modified binary files, they will be automatically
added to debian/source/include-binaries so that they end up in the debian tarball
(exactly like dpkg-source --include-binaries --build would do).
Build options
--allow-version-of-quilt-db=version
Allow dpkg-source to build the source package if the version of the quilt metadata is
the one specified, even if dpkg-source doesn't know about it (since dpkg 1.15.5.4).
Effectively this says that the given version of the quilt metadata is compatible with
the version 2 that dpkg-source currently supports. The version of the quilt metadata
is stored in .pc/.version.
--include-removal
Do not ignore removed files and include them in the automatically generated patch.
--include-timestamp
Include timestamp in the automatically generated patch.
--include-binaries
Add all modified binaries in the debian tarball. Also add them to
debian/source/include-binaries: they will be added by default in subsequent builds and
this option is thus no more needed.
--no-preparation
Do not try to prepare the build tree by applying patches which are apparently

unapplied (since dpkg 1.14.18). Page 11/17

--single-debian-patch

Use debian/patches/debian-changes instead of debian/patches/debian-changes-version for

the name of the automatic patch generated during build (since dpkg 1.15.5.4). This
option is particularly useful when the package is maintained in a VCS and a patch set
can't reliably be generated. Instead the current diff with upstream should be stored
in a single patch. The option would be put in debian/source/local-options and would be
accompanied by a debian/source/local-patch-header file explaining how the Debian
changes can be best reviewed, for example in the VCS that is used.

--Create-empty-orig
Automatically create the main original tarball as empty if it's missing and if there
are supplementary original tarballs (since dpkg 1.15.6). This option is meant to be
used when the source package is just a bundle of multiple upstream software and where
there's no ?main? software.

--no-unapply-patches, --unapply-patches
By default, dpkg-source will automatically unapply the patches in the --after-build
hook if it did apply them during --before-build (--unapply-patches since dpkg 1.15.8,
--no-unapply-patches since dpkg 1.16.5). Those options allow you to forcefully
disable or enable the patch unapplication process. Those options are only allowed in
debian/source/local-options so that all generated source packages have the same
behavior by default.

--abort-on-upstream-changes
The process fails if an automatic patch has been generated (since dpkg 1.15.8). This
option can be used to ensure that all changes were properly recorded in separate quilt
patches prior to the source package build. This option is not allowed in
debian/source/options but can be used in debian/source/local-options.

--auto-commit
The process doesn't fail if an automatic patch has been generated, instead it's
immediately recorded in the quilt series.

Extract options

--skip-debianization
Skips extraction of the debian tarball on top of the upstream sources (since dpkg
1.15.1).

--skip-patches

Page 12/17

Do not apply patches at the end of the extraction (since dpkg 1.14.18).
Format: 3.0 (custom)
Supported since dpkg 1.14.17. This format is special. It doesn't represent a real source
package format but can be used to create source packages with arbitrary files.
Build options
All non-option arguments are taken as files to integrate in the generated source package.
They must exist and are preferably in the current directory. At least one file must be
given.
--target-format=value
Required. Defines the real format of the generated source package. The generated .dsc
file will contain this value in its Format field and not ?3.0 (custom)?.
Format: 3.0 (git)
Supported since dpkg 1.14.17. This format is experimental.
A source package in this format consists of a single bundle of a git repository .git to
hold the source of a package. There may also be a .gitshallow file listing revisions for
a shallow git clone.
Extracting
The bundle is cloned as a git repository to the target directory. If there is a
gitshallow file, it is installed as .git/shallow inside the cloned git repository.
Note that by default the new repository will have the same branch checked out that was
checked out in the original source. (Typically ?master?, but it could be anything.) Any
other branches will be available under remotes/origin/.
Building
Before going any further, some checks are done to ensure that we don't have any non-
ignored uncommitted changes.
git-bundle(1) is used to generate a bundle of the git repository. By default, all
branches and tags in the repository are included in the bundle.
Build options
--git-ref=ref
Allows specifying a git ref to include in the git bundle. Use disables the default
behavior of including all branches and tags. May be specified multiple times. The ref
can be the name of a branch or tag to include. It may also be any parameter that can

be passed to git-rev-list(1). For example, to include only the master branch, use Page 13/17

--git-ref=master. To include all tags and branches, except for the private branch, use
--git-ref=--all --git-ref="private
--git-depth=number
Creates a shallow clone with a history truncated to the specified number of revisions.
Format: 3.0 (bzr)
Supported since dpkg 1.14.17. This format is experimental. It generates a single tarball
containing the bzr repository.
Extracting
The tarball is unpacked and then bzr is used to checkout the current branch.
Building
Before going any further, some checks are done to ensure that we don't have any non-
ignored uncommitted changes.
Then the VCS specific part of the source directory is copied over to a temporary
directory. Before this temporary directory is packed in a tarball, various cleanup are
done to save space.
DIAGNOSTICS
no source format specified in debian/source/format
The file debian/source/format should always exist and indicate the desired source format.
For backwards compatibility, format ?1.0? is assumed when the file doesn't exist but you
should not rely on this: at some point in the future dpkg-source will be modified to fail
when that file doesn't exist.
The rationale is that format ?1.07? is no longer the recommended format, you should usually
pick one of the newer formats (?3.0 (quilt)?, ?3.0 (native)?) but dpkg-source will not do
this automatically for you. If you want to continue using the old format, you should be
explicit about it and put ?1.0? in debian/source/format.
the diff modifies the following upstream files
When using source format ?1.0? it is usually a bad idea to modify upstream files directly
as the changes end up hidden and mostly undocumented in the .diff.gz file. Instead you
should store your changes as patches in the debian directory and apply them at build-time.
To avoid this complexity you can also use the format ?3.0 (quilt)? that offers this
natively.
cannot represent change to file

Changes to upstream sources are usually stored with patch files, but not all changes can Page 14/17

be represented with patches: they can only alter the content of plain text files. If you
try replacing a file with something of a different type (for example replacing a plain
file with a symlink or a directory), you will get this error message.
newly created empty file file will not be represented in diff
Empty files can't be created with patch files. Thus this change is not recorded in the
source package and you are warned about it.
executable mode perms of file will not be represented in diff
Patch files do not record permissions of files and thus executable permissions are not
stored in the source package. This warning reminds you of that fact.
special mode perms of file will not be represented in diff
Patch files do not record permissions of files and thus modified permissions are not
stored in the source package. This warning reminds you of that fact.
ENVIRONMENT
DPKG_COLORS
Sets the color mode (since dpkg 1.18.5). The currently accepted values are: auto
(default), always and never.
DPKG_NLS
If set, it will be used to decide whether to activate Native Language Support, also
known as internationalization (or i18n) support (since dpkg 1.19.0). The accepted
values are: 0 and 1 (default).
SOURCE_DATE_EPOCH
If set, it will be used as the timestamp (as seconds since the epoch) to clamp the
mtime in the tar(5) file entries.
VISUAL
EDITOR
Used by the ?2.0? and ?3.0 (quilt)? source format modules.
GIT_DIR
GIT_INDEX_FILE
GIT_OBJECT_DIRECTORY
GIT_ALTERNATE_OBJECT_DIRECTORIES
GIT_WORK_TREE

Used by the ?3.0 (git)? source format modules.

FILES Page 15/17

debian/source/format

This file contains on a single line the format that should be used to build the source

package (possible formats are described above). No leading or trailing spaces are allowed.
debian/source/include-binaries

This file contains a list of pathnames of binary files (one per line) relative to the

source root directory that should be included in the debian tarball. Leading and trailing

spaces are stripped. Lines starting with ?#? are comments and are skipped. Empty lines

are ignored.
debian/source/options
This file contains a list of long options that should be automatically prepended to the
set of command line options of a dpkg-source --build or dpkg-source --print-format call.
Options like --compression and --compression-level are well suited for this file.
Each option should be put on a separate line. Empty lines and lines starting with ?#? are
ignored. The leading ?--? should be stripped and short options are not allowed. Optional
spaces are allowed around the ?=? symbol and optional quotes are allowed around the value.
Here's an example of such a file:
let dpkg-source create a debian.tar.bz2 with maximal compression
compression = "bzip2"
compression-level = 9
use debian/patches/debian-changes as automatic patch
single-debian-patch
ignore changes on config.{sub,guess}
extend-diff-ignore = "("|/)(config.sub|config.guess)$"
Note: format options are not accepted in this file, you should use debian/source/format
instead.
debian/source/local-options
Exactly like debian/source/options except that the file is not included in the generated
source package. It can be useful to store a preference tied to the maintainer or to the
VCS repository where the source package is maintained.
debian/source/local-patch-header
debian/source/patch-header
Free form text that is put on top of the automatic patch generated in formats ?2.0? or

?3.0 (quilt)?. local-patch-header is not included in the generated source package while Page 16/17

patch-header is.
debian/patches/vendor.series
debian/patches/series
This file lists all patches that have to be applied (in the given order) on top of the
upstream source package. Leading and trailing spaces are stripped. The vendor will be the
lowercase name of the current vendor, or debian if there is no vendor defined. If the
vendor-specific series file does not exist, the vendor-less series file will be used.
Lines starting with ?#? are comments and are skipped. Empty lines are ignored. Remaining
lines start with a patch filename (relative to the debian/patches/ directory) up to the
first space character or the end of line. Optional quilt options can follow up to the end
of line or the first ?#? preceded by one or more spaces (which marks the start of a
comment up to the end of line).
BUGS
The point at which field overriding occurs compared to certain standard output field
settings is rather confused.
SEE ALSO
deb-src-control(5), deb-changelog(5), dsc(5).

1.21.1 2024-02-23 dpkg-source(1)

Page 17/17

