

Full credit is given to the above companies including the Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'dremf.3'

\$ man dremf.3

REMAINDER(3)

Linux Programmer's Manual

REMAINDER(3)

NAME

drem, dremf, dreml, remainder, remainderf, remainderl - floating-point remainder function

SYNOPSIS

```
#include <math.h>

/* The C99 versions */

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

/* Obsolete synonyms */

double drem(double x, double y);

float dremf(float x, float y);

long double dreml(long double x, long double y);
```

Link with -lm.

Feature Test Macro Requirements for glibc (see `feature_test_macros(7)`):

```
remainder():

_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

remainderf(), remainderl():

_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
```

```
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
```

drem(), dremf(), dreml():

```
/* Since glibc 2.19: */ _DEFAULT_SOURCE
```

```
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
```

DESCRIPTION

These functions compute the remainder of dividing x by y . The return value is $x - n \cdot y$, where n is the value x / y , rounded to the nearest integer. If the absolute value of $x - n \cdot y$ is 0.5, n is chosen to be even.

These functions are unaffected by the current rounding mode (see `fenv(3)`).

The `drem()` function does precisely the same thing.

RETURN VALUE

On success, these functions return the floating-point remainder, $x - n \cdot y$. If the return value is 0, it has the sign of x .

If x or y is a NaN, a NaN is returned.

If x is an infinity, and y is not a NaN, a domain error occurs, and a NaN is returned.

If y is zero, and x is not a NaN, a domain error occurs, and a NaN is returned.

ERRORS

See `math_error(7)` for information on how to determine whether an error has occurred when calling these functions.

The following errors can occur:

Domain error: x is an infinity and y is not a NaN

`errno` is set to `EDOM` (but see `BUGS`). An invalid floating-point exception (`FE_INFINITE` or `FE_INVALID`) is raised.

These functions do not set `errno` for this case.

Domain error: y is zero

`errno` is set to `EDOM`. An invalid floating-point exception (`FE_INVALID`) is raised.

ATTRIBUTES

For an explanation of the terms used in this section, see `attributes(7)`.

??

?Interface ? Attribute ? Value ?

??

?`drem()`, `dremf()`, `dreml()`, ? Thread safety ? MT-Safe ?

?`remainder()`, `remainderf()`, ? ? ?

?remainderl() ? ? ?
??

CONFORMING TO

The functions `remainder()`, `remainderf()`, and `remainderl()` are specified in C99, POSIX.1-2001, and POSIX.1-2008.

The function `drem()` is from 4.3BSD. The float and long double variants `dremf()` and `dreml()` exist on some systems, such as Tru64 and glibc2. Avoid the use of these functions in favor of `remainder()` etc.

BUGS

Before glibc 2.15, the call

```
remainder(nan(""), 0);
```

returned a NaN, as expected, but wrongly caused a domain error. Since glibc 2.15, a silent NaN (i.e., no domain error) is returned.

Before glibc 2.15, `errno` was not set to `EDOM` for the domain error that occurs when `x` is an infinity and `y` is not a NaN.

EXAMPLES

The call "remainder(29.0, 3.0)" returns -1.

SEE ALSO

`div(3)`, `fmod(3)`, `remquo(3)`

COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at <https://www.kernel.org/doc/man-pages/>.