
Rocky Enterprise Linux 9.2 Manual Pages on command 'dup3.2'

$ man dup3.2

DUP(2) Linux Programmer's Manual DUP(2)

NAME

 dup, dup2, dup3 - duplicate a file descriptor

SYNOPSIS

 #include <unistd.h>

 int dup(int oldfd);

 int dup2(int oldfd, int newfd);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <fcntl.h> /* Obtain O_* constant definitions */

 #include <unistd.h>

 int dup3(int oldfd, int newfd, int flags);

DESCRIPTION

 The dup() system call creates a copy of the file descriptor oldfd, using the lowest-num?

 bered unused file descriptor for the new descriptor.

 After a successful return, the old and new file descriptors may be used interchangeably.

 They refer to the same open file description (see open(2)) and thus share file offset and

 file status flags; for example, if the file offset is modified by using lseek(2) on one of

 the file descriptors, the offset is also changed for the other.

 The two file descriptors do not share file descriptor flags (the close-on-exec flag). The

 close-on-exec flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

 dup2()

 The dup2() system call performs the same task as dup(), but instead of using the lowest-

 numbered unused file descriptor, it uses the file descriptor number specified in newfd. Page 1/4

 If the file descriptor newfd was previously open, it is silently closed before being

 reused.

 The steps of closing and reusing the file descriptor newfd are performed atomically. This

 is important, because trying to implement equivalent functionality using close(2) and

 dup() would be subject to race conditions, whereby newfd might be reused between the two

 steps. Such reuse could happen because the main program is interrupted by a signal han?

 dler that allocates a file descriptor, or because a parallel thread allocates a file de?

 scriptor.

 Note the following points:

 * If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

 * If oldfd is a valid file descriptor, and newfd has the same value as oldfd, then dup2()

 does nothing, and returns newfd.

 dup3()

 dup3() is the same as dup2(), except that:

 * The caller can force the close-on-exec flag to be set for the new file descriptor by

 specifying O_CLOEXEC in flags. See the description of the same flag in open(2) for

 reasons why this may be useful.

 * If oldfd equals newfd, then dup3() fails with the error EINVAL.

RETURN VALUE

 On success, these system calls return the new file descriptor. On error, -1 is returned,

 and errno is set appropriately.

ERRORS

 EBADF oldfd isn't an open file descriptor.

 EBADF newfd is out of the allowed range for file descriptors (see the discussion of

 RLIMIT_NOFILE in getrlimit(2)).

 EBUSY (Linux only) This may be returned by dup2() or dup3() during a race condition with

 open(2) and dup().

 EINTR The dup2() or dup3() call was interrupted by a signal; see signal(7).

 EINVAL (dup3()) flags contain an invalid value.

 EINVAL (dup3()) oldfd was equal to newfd.

 EMFILE The per-process limit on the number of open file descriptors has been reached (see

 the discussion of RLIMIT_NOFILE in getrlimit(2)).

VERSIONS Page 2/4

 dup3() was added to Linux in version 2.6.27; glibc support is available starting with ver?

 sion 2.9.

CONFORMING TO

 dup(), dup2(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

 dup3() is Linux-specific.

NOTES

 The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...)

 when newfd is out of range. On some systems, dup2() also sometimes returns EINVAL like

 F_DUPFD.

 If newfd was open, any errors that would have been reported at close(2) time are lost. If

 this is of concern, then?unless the program is single-threaded and does not allocate file

 descriptors in signal handlers?the correct approach is not to close newfd before calling

 dup2(), because of the race condition described above. Instead, code something like the

 following could be used:

 /* Obtain a duplicate of 'newfd' that can subsequently

 be used to check for close() errors; an EBADF error

 means that 'newfd' was not open. */

 tmpfd = dup(newfd);

 if (tmpfd == -1 && errno != EBADF) {

 /* Handle unexpected dup() error */

 }

 /* Atomically duplicate 'oldfd' on 'newfd' */

 if (dup2(oldfd, newfd) == -1) {

 /* Handle dup2() error */

 }

 /* Now check for close() errors on the file originally

 referred to by 'newfd' */

 if (tmpfd != -1) {

 if (close(tmpfd) == -1) {

 /* Handle errors from close */

 }

 }

SEE ALSO Page 3/4

 close(2), fcntl(2), open(2), pidfd_getfd(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 DUP(2)

Page 4/4

