
Linux Ubuntu 22.4.5 Manual Pages on command 'ebtables-legacy.8'

$ man ebtables-legacy.8

EBTABLES-LEGACY(8)                System Manager's Manual               EBTABLES-LEGACY(8)

NAME

       ebtables-legacy - Ethernet bridge frame table administration (legacy)

SYNOPSIS

       ebtables  [-t  table ] -[ACDI] chain rule specification [match extensions] [watcher

       extensions] target

       ebtables [-t table ] -P chain ACCEPT | DROP | RETURN

       ebtables [-t table ] -F [chain]

       ebtables [-t table ] -Z [chain]

       ebtables [-t table ] -L [-Z] [chain] [ [--Ln] | [--Lx] ] [--Lc] [--Lmac2]

       ebtables [-t table ] -N chain [-P ACCEPT | DROP | RETURN]

       ebtables [-t table ] -X [chain]

       ebtables [-t table ] -E old-chain-name new-chain-name

       ebtables [-t table ] --init-table

       ebtables [-t table ] [--atomic-file file] --atomic-commit

       ebtables [-t table ] [--atomic-file file] --atomic-init

       ebtables [-t table ] [--atomic-file file] --atomic-save

LEGACY

       This tool uses the old xtables/setsockopt framework, and is  a  legacy  version  of

       ebtables.  That means that a new, more modern tool exists with the same functional?

       ity using the nf_tables framework and you are encouraged to migrate now.   The  new

       binaries  (known  as  ebtables-nft  and formerly known as ebtables-compat) uses the
Page 1/21



       same syntax and semantics than this legacy one.

       You can still use this legacy tool. You should probably get some specific  informa?

       tion  from  your  Linux  distribution  or  vendor.   More  docs  are  available  at

       https://wiki.nftables.org

DESCRIPTION

       ebtables is an application program used to set up and maintain the tables of  rules

       (inside  the  Linux  kernel)  that inspect Ethernet frames.  It is analogous to the

       iptables application, but less complicated, due to the fact that the Ethernet  pro?

       tocol is much simpler than the IP protocol.

   CHAINS

       There are three ebtables tables with built-in chains in the Linux kernel. These ta?

       bles are used to divide functionality into different sets of  rules.  Each  set  of

       rules  is  called  a  chain.  Each chain is an ordered list of rules that can match

       Ethernet frames. If a rule matches an Ethernet frame, then a processing  specifica?

       tion  tells  what  to  do with that matching frame. The processing specification is

       called a 'target'. However, if the frame does not match the  current  rule  in  the

       chain, then the next rule in the chain is examined and so forth.  The user can cre?

       ate new (user-defined) chains that can be used as the 'target' of a rule.  User-de?

       fined chains are very useful to get better performance over the linear traversal of

       the rules and are also essential for structuring the filtering rules into  well-or?

       ganized and maintainable sets of rules.

   TARGETS

       A  firewall  rule  specifies  criteria for an Ethernet frame and a frame processing

       specification called a target.  When a frame matches a rule, then the  next  action

       performed by the kernel is specified by the target.  The target can be one of these

       values: ACCEPT, DROP, CONTINUE, RETURN, an 'extension' (see below) or a jump  to  a

       user-defined chain.

       ACCEPT  means to let the frame through.  DROP means the frame has to be dropped. In

       the BROUTING chain however, the ACCEPT and DROP target have different meanings (see

       the  info  provided  for  the  -t  option).  CONTINUE means the next rule has to be

       checked. This can be handy, f.e., to know how many frames pass a certain  point  in

       the  chain,  to  log  those frames or to apply multiple targets on a frame.  RETURN

       means stop traversing this chain and resume at the next rule in the previous (call? Page 2/21



       ing)  chain.   For the extension targets please refer to the TARGET EXTENSIONS sec?

       tion of this man page.

   TABLES

       As stated earlier, there are three ebtables tables in the Linux kernel.  The  table

       names  are  filter, nat and broute.  Of these three tables, the filter table is the

       default table that the command operates on.  If you are working with the filter ta?

       ble,  then you can drop the '-t filter' argument to the ebtables command.  However,

       you will need to provide the -t argument for the other two tables.   Moreover,  the

       -t argument must be the first argument on the ebtables command line, if used.

       -t, --table

              filter  is  the default table and contains three built-in chains: INPUT (for

              frames destined for the bridge itself, on the level of the  MAC  destination

              address),  OUTPUT  (for  locally-generated  or (b)routed frames) and FORWARD

              (for frames being forwarded by the bridge).

              nat is mostly used to change the mac addresses and contains  three  built-in

              chains:  PREROUTING  (for  altering  frames as soon as they come in), OUTPUT

              (for altering locally generated or (b)routed frames before they are bridged)

              and  POSTROUTING  (for altering frames as they are about to go out). A small

              note on the naming of chains PREROUTING and POSTROUTING: it  would  be  more

              accurate  to  call  them PREFORWARDING and POSTFORWARDING, but for all those

              who come from the iptables world to ebtables it is easier to have  the  same

              names. Note that you can change the name (-E) if you don't like the default.

              broute  is used to make a brouter, it has one built-in chain: BROUTING.  The

              targets DROP and ACCEPT have a special meaning in the  broute  table  (these

              names  are used instead of more descriptive names to keep the implementation

              generic).  DROP actually means the frame has  to  be  routed,  while  ACCEPT

              means  the  frame  has  to  be bridged. The BROUTING chain is traversed very

              early. However, it is only traversed by frames entering  on  a  bridge  port

              that is in forwarding state. Normally those frames would be bridged, but you

              can decide otherwise here. The redirect target is very handy here.

EBTABLES COMMAND LINE ARGUMENTS

       After the initial ebtables '-t table' command line argument,  the  remaining  argu?

       ments can be divided into several groups.  These groups are commands, miscellaneous Page 3/21



       commands, rule specifications, match extensions, watcher extensions and target  ex?

       tensions.

   COMMANDS

       The  ebtables command arguments specify the actions to perform on the table defined

       with the -t argument.  If you do not use the -t argument to name a table, the  com?

       mands  apply to the default filter table.  Only one command may be used on the com?

       mand line at a time, except when the commands -L and -Z are combined, the  commands

       -N and -P are combined, or when --atomic-file is used.

       -A, --append

              Append a rule to the end of the selected chain.

       -D, --delete

              Delete  the  specified  rule or rules from the selected chain. There are two

              ways to use this command. The first is by specifying  an  interval  of  rule

              numbers  to  delete  (directly after -D).  Syntax: start_nr[:end_nr] (use -L

              --Ln to list the rules with their rule number). When end_nr is omitted,  all

              rules starting from start_nr are deleted. Using negative numbers is allowed,

              for more details about using negative numbers, see the -I command. The  sec?

              ond usage is by specifying the complete rule as it would have been specified

              when it was added. Only the first encountered rule that is the same as  this

              specified  rule, in other words the matching rule with the lowest (positive)

              rule number, is deleted.

       -C, --change-counters

              Change the counters of the specified rule or rules from the selected  chain.

              There are two ways to use this command. The first is by specifying an inter?

              val of rule numbers to do the  changes  on  (directly  after  -C).   Syntax:

              start_nr[:end_nr]  (use  -L  --Ln to list the rules with their rule number).

              The details are the same as for the -D command. The second usage is by spec?

              ifying  the complete rule as it would have been specified when it was added.

              Only the counters of the first encountered rule that is  the  same  as  this

              specified  rule, in other words the matching rule with the lowest (positive)

              rule number, are changed.  In the first usage, the  counters  are  specified

              directly  after the interval specification, in the second usage directly af?

              ter -C.  First the packet counter is specified, then the  byte  counter.  If Page 4/21



              the specified counters start with a '+', the counter values are added to the

              respective current counter values.  If the specified counters start  with  a

              '-',  the  counter  values are decreased from the respective current counter

              values. No bounds checking is done. If the counters don't start with '+'  or

              '-', the current counters are changed to the specified counters.

       -I, --insert

              Insert the specified rule into the selected chain at the specified rule num?

              ber. If the rule number is not specified, the rule is added at the  head  of

              the chain.  If the current number of rules equals N, then the specified num?

              ber can be between -N and N+1.  For a positive number i, it holds that i and

              i-N-1 specify the same place in the chain where the rule should be inserted.

              The rule number 0 specifies the place past the last rule in  the  chain  and

              using  this  number  is  therefore equivalent to using the -A command.  Rule

              numbers structly smaller than 0 can be useful when more than one rule  needs

              to be inserted in a chain.

       -P, --policy

              Set  the policy for the chain to the given target. The policy can be ACCEPT,

              DROP or RETURN.

       -F, --flush

              Flush the selected chain. If no chain is selected, then every chain will  be

              flushed. Flushing a chain does not change the policy of the chain, however.

       -Z, --zero

              Set the counters of the selected chain to zero. If no chain is selected, all

              the counters are set to zero. The -Z command can be used in conjunction with

              the  -L command.  When both the -Z and -L commands are used together in this

              way, the rule counters are printed on the screen  before  they  are  set  to

              zero.

       -L, --list

              List  all  rules  in the selected chain. If no chain is selected, all chains

              are listed.

              The following options change the output of the -L command.

              --Ln

              Places the rule number in front of every rule. This option  is  incompatible Page 5/21



              with the --Lx option.

              --Lc

              Shows the counters at the end of each rule displayed by the -L command. Both

              a frame counter (pcnt) and a byte counter (bcnt) are displayed.   The  frame

              counter  shows  how  many  frames  have  matched the specific rule, the byte

              counter shows the sum of the frame sizes of  these  matching  frames.  Using

              this  option  in  combination with the --Lx option causes the counters to be

              written out in the '-c <pcnt> <bcnt>' option format.

              --Lx

              Changes the output so that it produces a set of ebtables commands that  con?

              struct the contents of the chain, when specified.  If no chain is specified,

              ebtables commands to construct the contents of the table are given,  includ?

              ing  commands  for  creating  the user-defined chains (if any).  You can use

              this set of commands in an ebtables boot or reload script.  For example  the

              output  could  be  used  at system startup.  The --Lx option is incompatible

              with the --Ln listing option. Using the --Lx option together with  the  --Lc

              option  will  cause the counters to be written out in the '-c <pcnt> <bcnt>'

              option format.

              --Lmac2

              Shows all MAC addresses with the same length, adding leading zeroes if  nec?

              essary. The default representation omits leading zeroes in the addresses.

       -N, --new-chain

              Create  a new user-defined chain with the given name. The number of user-de?

              fined chains is limited only by the number of possible chain names.  A user-

              defined  chain name has a maximum length of 31 characters. The standard pol?

              icy of the user-defined chain is ACCEPT. The policy of the new chain can  be

              initialized  to a different standard target by using the -P command together

              with the -N command. In this case, the chain name does not have to be speci?

              fied for the -P command.

       -X, --delete-chain

              Delete  the  specified user-defined chain. There must be no remaining refer?

              ences (jumps) to the specified chain,  otherwise  ebtables  will  refuse  to

              delete  it.  If  no  chain is specified, all user-defined chains that aren't Page 6/21



              referenced will be removed.

       -E, --rename-chain

              Rename the specified chain to a new name.  Besides renaming  a  user-defined

              chain,  you can rename a standard chain to a name that suits your taste. For

              example, if you like PREFORWARDING more than PREROUTING, then  you  can  use

              the  -E  command to rename the PREROUTING chain. If you do rename one of the

              standard ebtables chain names, please be sure to mention  this  fact  should

              you  post a question on the ebtables mailing lists.  It would be wise to use

              the standard name in your post. Renaming a standard ebtables chain  in  this

              fashion has no effect on the structure or functioning of the ebtables kernel

              table.

       --init-table

              Replace the current table data by the initial table data.

       --atomic-init

              Copy the kernel's initial data of the table to the specified file. This  can

              be  used  as  the first action, after which rules are added to the file. The

              file can be specified using the --atomic-file command or through  the  EBTA?

              BLES_ATOMIC_FILE environment variable.

       --atomic-save

              Copy  the kernel's current data of the table to the specified file. This can

              be used as the first action, after which rules are added to  the  file.  The

              file  can  be specified using the --atomic-file command or through the EBTA?

              BLES_ATOMIC_FILE environment variable.

       --atomic-commit

              Replace the kernel table data with the data contained in the specified file.

              This is a useful command that allows you to load all your rules of a certain

              table into the kernel at once, saving the kernel a lot of precious time  and

              allowing  atomic  updates  of  the tables. The file which contains the table

              data is constructed by using either the --atomic-init or  the  --atomic-save

              command  to  generate  a  starting file. After that, using the --atomic-file

              command when constructing rules or setting the EBTABLES_ATOMIC_FILE environ?

              ment variable allows you to extend the file and build the complete table be?

              fore committing it to the kernel. This command can be very  useful  in  boot Page 7/21



              scripts to populate the ebtables tables in a fast way.

   MISCELLANOUS COMMANDS

       -V, --version

              Show the version of the ebtables userspace program.

       -h, --help [list of module names]

              Give  a  brief  description of the command syntax. Here you can also specify

              names of extensions and ebtables will try to write help about  those  exten?

              sions.  E.g.   ebtables -h snat log ip arp.  Specify list_extensions to list

              all extensions supported by the userspace utility.

       -j, --jump target

              The target of the rule. This is one of the following values:  ACCEPT,  DROP,

              CONTINUE,  RETURN,  a target extension (see TARGET EXTENSIONS) or a user-de?

              fined chain name.

       --atomic-file file

              Let the command operate on the specified file.  The data of the table to op?

              erate  on  will  be  extracted from the file and the result of the operation

              will be saved back into the file. If specified, this option should come  be?

              fore  the command specification. An alternative that should be preferred, is

              setting the EBTABLES_ATOMIC_FILE environment variable.

       -M, --modprobe program

              When talking to the kernel, use this program to try  to  automatically  load

              missing kernel modules.

       --concurrent

              Use  a  file lock to support concurrent scripts updating the ebtables kernel

              tables.

   RULE SPECIFICATIONS

       The following command line arguments make up a rule specification (as used  in  the

       add  and  delete  commands). A "!" option before the specification inverts the test

       for that specification. Apart from these standard  rule  specifications  there  are

       some  other  command line arguments of interest.  See both the MATCH EXTENSIONS and

       the WATCHER EXTENSIONS below.

       -p, --protocol [!] protocol

              The protocol that was responsible for creating the  frame.  This  can  be  a Page 8/21



              hexadecimal number, above 0x0600, a name (e.g.  ARP ) or LENGTH.  The proto?

              col field of the Ethernet frame can be used to  denote  the  length  of  the

              header  (802.2/802.3  networks).  When  the  value of that field is below or

              equals 0x0600, the value equals the size of the header and shouldn't be used

              as  a  protocol number. Instead, all frames where the protocol field is used

              as the length field are assumed to be of the same 'protocol'.  The  protocol

              name used in ebtables for these frames is LENGTH.

              The  file /etc/ethertypes can be used to show readable characters instead of

              hexadecimal numbers for the protocols. For example, 0x0800  will  be  repre?

              sented  by IPV4.  The use of this file is not case sensitive.  See that file

              for more information. The flag --proto is an alias for this option.

       -i, --in-interface [!] name

              The interface (bridge port) via which a frame is received  (this  option  is

              useful in the INPUT, FORWARD, PREROUTING and BROUTING chains). If the inter?

              face name ends with '+', then any interface name that begins with this  name

              (disregarding  '+')  will  match.  The flag --in-if is an alias for this op?

              tion.

       --logical-in [!] name

              The (logical) bridge interface via which a frame is received (this option is

              useful  in  the INPUT, FORWARD, PREROUTING and BROUTING chains).  If the in?

              terface name ends with '+', then any interface name that  begins  with  this

              name (disregarding '+') will match.

       -o, --out-interface [!] name

              The  interface (bridge port) via which a frame is going to be sent (this op?

              tion is useful in the OUTPUT, FORWARD and POSTROUTING chains). If the inter?

              face  name ends with '+', then any interface name that begins with this name

              (disregarding '+') will match.  The flag --out-if is an alias for  this  op?

              tion.

       --logical-out [!] name

              The  (logical)  bridge interface via which a frame is going to be sent (this

              option is useful in the OUTPUT, FORWARD and POSTROUTING chains).  If the in?

              terface  name  ends  with '+', then any interface name that begins with this

              name (disregarding '+') will match. Page 9/21



       -s, --source [!] address[/mask]

              The source MAC address. Both mask and address are written as  6  hexadecimal

              numbers  separated  by colons. Alternatively one can specify Unicast, Multi?

              cast, Broadcast or BGA (Bridge Group Address):

              Unicast=00:00:00:00:00:00/01:00:00:00:00:00,                          Multi?

              cast=01:00:00:00:00:00/01:00:00:00:00:00,                             Broad?

              cast=ff:ff:ff:ff:ff:ff/ff:ff:ff:ff:ff:ff                                  or

              BGA=01:80:c2:00:00:00/ff:ff:ff:ff:ff:ff.  Note that a broadcast address will

              also match the multicast specification. The flag --src is an alias for  this

              option.

       -d, --destination [!] address[/mask]

              The  destination  MAC  address.  See  -s (above) for more details on MAC ad?

              dresses. The flag --dst is an alias for this option.

       -c, --set-counter pcnt bcnt

              If used with -A or -I, then the packet and byte counters  of  the  new  rule

              will  be  set to pcnt, resp. bcnt.  If used with the -C or -D commands, only

              rules with a packet and byte count equal to pcnt, resp. bcnt will match.

   MATCH EXTENSIONS

       Ebtables extensions are dynamically loaded into the userspace tool, there is there?

       fore  no  need  to  explicitly load them with a -m option like is done in iptables.

       These extensions deal with functionality supported by kernel  modules  supplemental

       to the core ebtables code.

   802_3

       Specify  802.3  DSAP/SSAP  fields  or SNAP type.  The protocol must be specified as

       LENGTH (see the option  -p above).

       --802_3-sap [!] sap

              DSAP and SSAP are two one byte 802.3 fields.  The bytes are always equal, so

              only one byte (hexadecimal) is needed as an argument.

       --802_3-type [!] type

              If  the 802.3 DSAP and SSAP values are 0xaa then the SNAP type field must be

              consulted to determine the payload protocol.  This is a two byte  (hexadeci?

              mal) argument.  Only 802.3 frames with DSAP/SSAP 0xaa are checked for type.

   among Page 10/21



       Match  a  MAC  address  or  MAC/IP  address pair versus a list of MAC addresses and

       MAC/IP   address   pairs.    A   list   entry    has    the    following    format:

       xx:xx:xx:xx:xx:xx[=ip.ip.ip.ip][,]. Multiple list entries are separated by a comma,

       specifying an IP address corresponding to the MAC  address  is  optional.  Multiple

       MAC/IP  address  pairs with the same MAC address but different IP address (and vice

       versa) can be specified. If the MAC address doesn't match any entry from the  list,

       the frame doesn't match the rule (unless "!" was used).

       --among-dst [!] list

              Compare  the  MAC  destination  to the given list. If the Ethernet frame has

              type IPv4 or ARP, then comparison with MAC/IP destination address pairs from

              the list is possible.

       --among-src [!] list

              Compare  the  MAC  source  to the given list. If the Ethernet frame has type

              IPv4 or ARP, then comparison with MAC/IP source address pairs from the  list

              is possible.

       --among-dst-file [!] file

              Same as --among-dst but the list is read in from the specified file.

       --among-src-file [!] file

              Same as --among-src but the list is read in from the specified file.

   arp

       Specify (R)ARP fields. The protocol must be specified as ARP or RARP.

       --arp-opcode [!] opcode

              The  (R)ARP  opcode  (decimal  or a string, for more details see ebtables -h

              arp).

       --arp-htype [!] hardware type

              The hardware type, this can be a decimal or the string Ethernet (which  sets

              type to 1). Most (R)ARP packets have Eternet as hardware type.

       --arp-ptype [!] protocol type

              The  protocol  type  for which the (r)arp is used (hexadecimal or the string

              IPv4, denoting 0x0800).  Most (R)ARP packets have protocol type IPv4.

       --arp-ip-src [!] address[/mask]

              The (R)ARP IP source address specification.

       --arp-ip-dst [!] address[/mask] Page 11/21



              The (R)ARP IP destination address specification.

       --arp-mac-src [!] address[/mask]

              The (R)ARP MAC source address specification.

       --arp-mac-dst [!] address[/mask]

              The (R)ARP MAC destination address specification.

       [!] --arp-gratuitous

              Checks for ARP gratuitous packets: checks equality of  IPv4  source  address

              and IPv4 destination address inside the ARP header.

   ip

       Specify IPv4 fields. The protocol must be specified as IPv4.

       --ip-source [!] address[/mask]

              The source IP address.  The flag --ip-src is an alias for this option.

       --ip-destination [!] address[/mask]

              The destination IP address.  The flag --ip-dst is an alias for this option.

       --ip-tos [!] tos

              The IP type of service, in hexadecimal numbers.  IPv4.

       --ip-protocol [!] protocol

              The IP protocol.  The flag --ip-proto is an alias for this option.

       --ip-source-port [!] port1[:port2]

              The  source  port  or  port range for the IP protocols 6 (TCP), 17 (UDP), 33

              (DCCP) or 132 (SCTP). The --ip-protocol option must  be  specified  as  TCP,

              UDP,  DCCP or SCTP.  If port1 is omitted, 0:port2 is used; if port2 is omit?

              ted but a colon is specified, port1:65535 is used.  The flag  --ip-sport  is

              an alias for this option.

       --ip-destination-port [!] port1[:port2]

              The  destination  port  or port range for ip protocols 6 (TCP), 17 (UDP), 33

              (DCCP) or 132 (SCTP). The --ip-protocol option must  be  specified  as  TCP,

              UDP,  DCCP or SCTP.  If port1 is omitted, 0:port2 is used; if port2 is omit?

              ted but a colon is specified, port1:65535 is used.  The flag  --ip-dport  is

              an alias for this option.

   ip6

       Specify IPv6 fields. The protocol must be specified as IPv6.

       --ip6-source [!] address[/mask] Page 12/21



              The source IPv6 address.  The flag --ip6-src is an alias for this option.

       --ip6-destination [!] address[/mask]

              The  destination  IPv6 address.  The flag --ip6-dst is an alias for this op?

              tion.

       --ip6-tclass [!] tclass

              The IPv6 traffic class, in hexadecimal numbers.

       --ip6-protocol [!] protocol

              The IP protocol.  The flag --ip6-proto is an alias for this option.

       --ip6-source-port [!] port1[:port2]

              The source port or port range for the IPv6 protocols 6 (TCP), 17  (UDP),  33

              (DCCP)  or  132  (SCTP). The --ip6-protocol option must be specified as TCP,

              UDP, DCCP or SCTP.  If port1 is omitted, 0:port2 is used; if port2 is  omit?

              ted  but a colon is specified, port1:65535 is used.  The flag --ip6-sport is

              an alias for this option.

       --ip6-destination-port [!] port1[:port2]

              The destination port or port range for IPv6 protocols 6 (TCP), 17 (UDP),  33

              (DCCP)  or  132  (SCTP). The --ip6-protocol option must be specified as TCP,

              UDP, DCCP or SCTP.  If port1 is omitted, 0:port2 is used; if port2 is  omit?

              ted  but a colon is specified, port1:65535 is used.  The flag --ip6-dport is

              an alias for this option.

       --ip6-icmp-type [!] {type[:type]/code[:code]|typename}

              Specify ipv6-icmp type and code to match.  Ranges for both type and code are

              supported.  Type  and  code are separated by a slash. Valid numbers for type

              and range are 0 to 255.  To match a single type including all  valid  codes,

              symbolic  names can be used instead of numbers. The list of known type names

              is shown by the command

                ebtables --help ip6

              This option is only valid for --ip6-prococol ipv6-icmp.

   limit

       This module matches at a limited rate using a token bucket filter.   A  rule  using

       this  extension  will  match  until this limit is reached.  It can be used with the

       --log watcher to give limited logging, for example. Its use  is  the  same  as  the

       limit match of iptables. Page 13/21



       --limit [value]

              Maximum average matching rate: specified as a number, with an optional /sec?

              ond, /minute, /hour, or /day suffix; the default is 3/hour.

       --limit-burst [number]

              Maximum initial number of packets to match: this number  gets  recharged  by

              one  every time the limit specified above is not reached, up to this number;

              the default is 5.

   mark_m

       --mark [!] [value][/mask]

              Matches frames with the given unsigned mark value. If a value and  mask  are

              specified, the logical AND of the mark value of the frame and the user-spec?

              ified mask is taken before comparing it with the user-specified mark  value.

              When  only  a mark value is specified, the packet only matches when the mark

              value of the frame equals the user-specified mark value.  If only a mask  is

              specified, the logical AND of the mark value of the frame and the user-spec?

              ified mask is taken and the frame matches when the result  of  this  logical

              AND  is  non-zero.  Only  specifying a mask is useful to match multiple mark

              values.

   pkttype

       --pkttype-type [!] type

              Matches on the Ethernet "class" of the frame, which  is  determined  by  the

              generic  networking code. Possible values: broadcast (MAC destination is the

              broadcast address), multicast (MAC destination is a multicast address), host

              (MAC destination is the receiving network device), or otherhost (none of the

              above).

   stp

       Specify stp BPDU (bridge protocol data unit) fields. The destination  address  (-d)

       must  be  specified as the bridge group address (BGA).  For all options for which a

       range of values can be specified, it holds that if the lower bound is omitted  (but

       the  colon  is  not), then the lowest possible lower bound for that option is used,

       while if the upper bound is omitted (but the colon again is not), the highest  pos?

       sible upper bound for that option is used.

       --stp-type [!] type Page 14/21



              The BPDU type (0-255), recognized non-numerical types are config, denoting a

              configuration BPDU (=0), and tcn, denothing a topology  change  notification

              BPDU (=128).

       --stp-flags [!] flag

              The  BPDU  flag (0-255), recognized non-numerical flags are topology-change,

              denoting the topology change flag (=1),  and  topology-change-ack,  denoting

              the topology change acknowledgement flag (=128).

       --stp-root-prio [!] [prio][:prio]

              The root priority (0-65535) range.

       --stp-root-addr [!] [address][/mask]

              The root mac address, see the option -s for more details.

       --stp-root-cost [!] [cost][:cost]

              The root path cost (0-4294967295) range.

       --stp-sender-prio [!] [prio][:prio]

              The BPDU's sender priority (0-65535) range.

       --stp-sender-addr [!] [address][/mask]

              The BPDU's sender mac address, see the option -s for more details.

       --stp-port [!] [port][:port]

              The port identifier (0-65535) range.

       --stp-msg-age [!] [age][:age]

              The message age timer (0-65535) range.

       --stp-max-age [!] [age][:age]

              The max age timer (0-65535) range.

       --stp-hello-time [!] [time][:time]

              The hello time timer (0-65535) range.

       --stp-forward-delay [!] [delay][:delay]

              The forward delay timer (0-65535) range.

   string

       This module matches on a given string using some pattern matching strategy.

       --string-algo algorithm

              The pattern matching strategy. (bm = Boyer-Moore, kmp = Knuth-Pratt-Morris)

       --string-from offset

              The lowest offset from which a match can start. (default: 0) Page 15/21



       --string-to offset

              The highest offset from which a match can start. (default: size of frame)

       --string [!] pattern

              Matches the given pattern.

       --string-hex [!] pattern

              Matches  the  given  pattern  in  hex  notation,  e.g.  '|0D 0A|', '|0D0A|',

              'www|09|netfilter|03|org|00|'

       --string-icase

              Ignore case when searching.

   vlan

       Specify 802.1Q Tag Control Information fields.  The protocol must be  specified  as

       802_1Q (0x8100).

       --vlan-id [!] id

              The VLAN identifier field (VID). Decimal number from 0 to 4095.

       --vlan-prio [!] prio

              The  user  priority  field, a decimal number from 0 to 7.  The VID should be

              set to 0 ("null VID") or unspecified (in the latter case the VID is deliber?

              ately set to 0).

       --vlan-encap [!] type

              The  encapsulated  Ethernet  frame  type/length.  Specified as a hexadecimal

              number from 0x0000 to 0xFFFF or as a symbolic name from /etc/ethertypes.

   WATCHER EXTENSIONS

       Watchers only look at frames passing by, they don't modify them nor decide  to  ac?

       cept  the frames or not. These watchers only see the frame if the frame matches the

       rule, and they see it before the target is executed.

   log

       The log watcher writes descriptive data about a frame to the syslog.

       --log

              Log with the default loggin options: log-level= info, log-prefix="",  no  ip

              logging, no arp logging.

       --log-level level

              Defines  the  logging  level.  For the possible values, see ebtables -h log.

              The default level is info. Page 16/21



       --log-prefix text

              Defines the prefix text to be printed at the beginning of the line with  the

              logging information.

       --log-ip

              Will log the ip information when a frame made by the ip protocol matches the

              rule. The default is no ip information logging.

       --log-ip6

              Will log the ipv6 information when a frame made by the ipv6 protocol matches

              the rule. The default is no ipv6 information logging.

       --log-arp

              Will  log  the  (r)arp information when a frame made by the (r)arp protocols

              matches the rule. The default is no (r)arp information logging.

   nflog

       The nflog watcher passes the packet to the loaded logging backend in order  to  log

       the packet. This is usually used in combination with nfnetlink_log as logging back?

       end, which will multicast the packet through a netlink socket to the specified mul?

       ticast group. One or more userspace processes may subscribe to the group to receive

       the packets.

       --nflog

              Log with the default logging options

       --nflog-group nlgroup

              The netlink group (1 - 2^32-1) to which packets  are  (only  applicable  for

              nfnetlink_log). The default value is 1.

       --nflog-prefix prefix

              A  prefix  string  to  include in the log message, up to 30 characters long,

              useful for distinguishing messages in the logs.

       --nflog-range size

              The number  of  bytes  to  be  copied  to  userspace  (only  applicable  for

              nfnetlink_log).  nfnetlink_log  instances  may specify their own range, this

              option overrides it.

       --nflog-threshold size

              Number of packets  to  queue  inside  the  kernel  before  sending  them  to

              userspace  (only applicable for nfnetlink_log). Higher values result in less Page 17/21



              overhead per packet, but increase delay until the packets  reach  userspace.

              The default value is 1.

   ulog

       The ulog watcher passes the packet to a userspace logging daemon using netlink mul?

       ticast sockets. This differs from the log watcher in the sense  that  the  complete

       packet  is  sent to userspace instead of a descriptive text and that netlink multi?

       cast sockets are used instead of the syslog.  This watcher enables parsing of pack?

       ets with userspace programs, the physical bridge in and out ports are also included

       in the netlink messages.  The ulog watcher module accepts  2  parameters  when  the

       module  is  loaded into the kernel (e.g. with modprobe): nlbufsiz specifies how big

       the buffer for each netlink multicast group is. If you say nlbufsiz=8192, for exam?

       ple,  up  to  eight kB of packets will get accumulated in the kernel until they are

       sent to userspace. It is not possible to allocate more than 128kB. Please also keep

       in  mind  that this buffer size is allocated for each nlgroup you are using, so the

       total kernel memory usage increases by that factor. The default  is  4096.   flush?

       timeout  specifies  after  how  many  hundredths  of  a  second the queue should be

       flushed, even if it is not full yet. The default is 10 (one tenth of a second).

       --ulog

              Use the default settings: ulog-prefix="", ulog-nlgroup=1, ulog-cprange=4096,

              ulog-qthreshold=1.

       --ulog-prefix text

              Defines the prefix included with the packets sent to userspace.

       --ulog-nlgroup group

              Defines  which  netlink  group  number to use (a number from 1 to 32).  Make

              sure the netlink group numbers used for the iptables ULOG target differ from

              those used for the ebtables ulog watcher.  The default group number is 1.

       --ulog-cprange range

              Defines  the maximum copy range to userspace, for packets matching the rule.

              The default range is 0, which means the maximum copy range is given  by  nl?

              bufsiz.   A  maximum  copy  range larger than 128*1024 is meaningless as the

              packets sent to userspace have an upper size limit of 128*1024.

       --ulog-qthreshold threshold

              Queue at most threshold number of packets before sending them  to  userspace Page 18/21



              with a netlink socket. Note that packets can be sent to userspace before the

              queue is full, this happens when the ulog kernel timer goes  off  (the  fre?

              quency of this timer depends on flushtimeout).

   TARGET EXTENSIONS

   arpreply

       The  arpreply target can be used in the PREROUTING chain of the nat table.  If this

       target sees an ARP request it will automatically reply with an ARP reply. The  used

       MAC address for the reply can be specified.  The protocol must be specified as ARP.

       When the ARP message is not an ARP request or when the ARP request isn't for an  IP

       address  on an Ethernet network, it is ignored by this target (CONTINUE).  When the

       ARP request is malformed, it is dropped (DROP).

       --arpreply-mac address

              Specifies the MAC address to reply with: the Ethernet source MAC and the ARP

              payload source MAC will be filled in with this address.

       --arpreply-target target

              Specifies  the  standard target. After sending the ARP reply, the rule still

              has to give a standard target so ebtables knows what to do with the ARP  re?

              quest.  The default target is DROP.

   dnat

       The  dnat target can only be used in the BROUTING chain of the broute table and the

       PREROUTING and OUTPUT chains of the nat table.  It specifies that  the  destination

       MAC address has to be changed.

       --to-destination address

              Change the destination MAC address to the specified address.  The flag --to-

              dst is an alias for this option.

       --dnat-target target

              Specifies the standard target. After doing the dnat, the rule still  has  to

              give  a  standard target so ebtables knows what to do with the dnated frame.

              The default target is ACCEPT.  Making it CONTINUE could let you use multiple

              target  extensions on the same frame. Making it DROP only makes sense in the

              BROUTING chain but using the redirect target is more logical  there.  RETURN

              is  also allowed. Note that using RETURN in a base chain is not allowed (for

              obvious reasons). Page 19/21



   mark

       The mark target can be used in every chain of every table. It is  possible  to  use

       the  marking of a frame/packet in both ebtables and iptables, if the bridge-nf code

       is compiled into the kernel. Both put the marking at the same  place.  This  allows

       for a form of communication between ebtables and iptables.

       --mark-set value

              Mark the frame with the specified non-negative value.

       --mark-or value

              Or the frame with the specified non-negative value.

       --mark-and value

              And the frame with the specified non-negative value.

       --mark-xor value

              Xor the frame with the specified non-negative value.

       --mark-target target

              Specifies  the  standard target. After marking the frame, the rule still has

              to give a standard target so ebtables knows what to do.  The default  target

              is  ACCEPT. Making it CONTINUE can let you do other things with the frame in

              subsequent rules of the chain.

   redirect

       The redirect target will change the MAC target address to that of the bridge device

       the  frame  arrived  on.  This target can only be used in the BROUTING chain of the

       broute table and the PREROUTING chain of the nat table.  In the BROUTING chain, the

       MAC  address  of  the bridge port is used as destination address, in the PREROUTING

       chain, the MAC address of the bridge is used.

       --redirect-target target

              Specifies the standard target. After doing the MAC redirect, the rule  still

              has  to  give  a  standard target so ebtables knows what to do.  The default

              target is ACCEPT. Making it CONTINUE could let you use multiple  target  ex?

              tensions  on  the  same frame. Making it DROP in the BROUTING chain will let

              the frames be routed. RETURN is also allowed. Note that using  RETURN  in  a

              base chain is not allowed.

   snat

       The  snat  target  can  only be used in the POSTROUTING chain of the nat table.  It Page 20/21



       specifies that the source MAC address has to be changed.

       --to-source address

              Changes the source MAC address to the specified address. The  flag  --to-src

              is an alias for this option.

       --snat-target target

              Specifies  the  standard target. After doing the snat, the rule still has to

              give a standard target so ebtables knows what to do.  The default target  is

              ACCEPT.  Making  it CONTINUE could let you use multiple target extensions on

              the same frame. Making it DROP doesn't make sense, but  you  could  do  that

              too.  RETURN  is also allowed. Note that using RETURN in a base chain is not

              allowed.

       --snat-arp

              Also change the hardware source address inside the arp header if the  packet

              is  an  arp  message  and the hardware address length in the arp header is 6

              bytes.

FILES

       /etc/ethertypes /var/lib/ebtables/lock

ENVIRONMENT VARIABLES

       EBTABLES_ATOMIC_FILE

MAILINGLISTS

       See http://netfilter.org/mailinglists.html

SEE ALSO

       iptables(8), brctl(8), ifconfig(8), route(8)

       See http://ebtables.sf.net

                                       December 2011                    EBTABLES-LEGACY(8)

Page 21/21


