
Rocky Enterprise Linux 9.2 Manual Pages on command 'endutent.3'

$ man endutent.3

GETUTENT(3) Linux Programmer's Manual GETUTENT(3)

NAME

 getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp file

 entries

SYNOPSIS

 #include <utmp.h>

 struct utmp *getutent(void);

 struct utmp *getutid(const struct utmp *ut);

 struct utmp *getutline(const struct utmp *ut);

 struct utmp *pututline(const struct utmp *ut);

 void setutent(void);

 void endutent(void);

 int utmpname(const char *file);

DESCRIPTION

 New applications should use the POSIX.1-specified "utmpx" versions of these functions; see

 CONFORMING TO.

 utmpname() sets the name of the utmp-format file for the other utmp functions to access.

 If utmpname() is not used to set the filename before the other functions are used, they

 assume _PATH_UTMP, as defined in <paths.h>.

 setutent() rewinds the file pointer to the beginning of the utmp file. It is generally a

 good idea to call it before any of the other functions.

 endutent() closes the utmp file. It should be called when the user code is done accessing

 the file with the other functions. Page 1/6

 getutent() reads a line from the current file position in the utmp file. It returns a

 pointer to a structure containing the fields of the line. The definition of this struc?

 ture is shown in utmp(5).

 getutid() searches forward from the current file position in the utmp file based upon ut.

 If ut->ut_type is one of RUN_LVL, BOOT_TIME, NEW_TIME, or OLD_TIME, getutid() will find

 the first entry whose ut_type field matches ut->ut_type. If ut->ut_type is one of

 INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, getutid() will find the first

 entry whose ut_id field matches ut->ut_id.

 getutline() searches forward from the current file position in the utmp file. It scans

 entries whose ut_type is USER_PROCESS or LOGIN_PROCESS and returns the first one whose

 ut_line field matches ut->ut_line.

 pututline() writes the utmp structure ut into the utmp file. It uses getutid() to search

 for the proper place in the file to insert the new entry. If it cannot find an appropri?

 ate slot for ut, pututline() will append the new entry to the end of the file.

RETURN VALUE

 getutent(), getutid(), and getutline() return a pointer to a struct utmp on success, and

 NULL on failure (which includes the "record not found" case). This struct utmp is allo?

 cated in static storage, and may be overwritten by subsequent calls.

 On success pututline() returns ut; on failure, it returns NULL.

 utmpname() returns 0 if the new name was successfully stored, or -1 on failure.

 In the event of an error, these functions errno set to indicate the cause.

ERRORS

 ENOMEM Out of memory.

 ESRCH Record not found.

 setutent(), pututline(), and the getut*() functions can also fail for the reasons de?

 scribed in open(2).

FILES

 /var/run/utmp

 database of currently logged-in users

 /var/log/wtmp

 database of past user logins

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7). Page 2/6

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?getutent() ? Thread safety ? MT-Unsafe init race:utent ?

 ? ? ? race:utentbuf sig:ALRM timer ?

 ???

 ?getutid(), ? Thread safety ? MT-Unsafe init race:utent ?

 ?getutline() ? ? sig:ALRM timer ?

 ???

 ?pututline() ? Thread safety ? MT-Unsafe race:utent ?

 ? ? ? sig:ALRM timer ?

 ???

 ?setutent(), ? Thread safety ? MT-Unsafe race:utent ?

 ?endutent(), ? ? ?

 ?utmpname() ? ? ?

 ???

 In the above table, utent in race:utent signifies that if any of the functions setutent(),

 getutent(), getutid(), getutline(), pututline(), utmpname(), or endutent() are used in

 parallel in different threads of a program, then data races could occur.

CONFORMING TO

 XPG2, SVr4.

 In XPG2 and SVID 2 the function pututline() is documented to return void, and that is what

 it does on many systems (AIX, HP-UX). HP-UX introduces a new function _pututline() with

 the prototype given above for pututline().

 All these functions are obsolete now on non-Linux systems. POSIX.1-2001 and POSIX.1-2008,

 following SUSv1, does not have any of these functions, but instead uses

 #include <utmpx.h>

 struct utmpx *getutxent(void);

 struct utmpx *getutxid(const struct utmpx *);

 struct utmpx *getutxline(const struct utmpx *);

 struct utmpx *pututxline(const struct utmpx *);

 void setutxent(void);

 void endutxent(void); Page 3/6

 These functions are provided by glibc, and perform the same task as their equivalents

 without the "x", but use struct utmpx, defined on Linux to be the same as struct utmp.

 For completeness, glibc also provides utmpxname(), although this function is not specified

 by POSIX.1.

 On some other systems, the utmpx structure is a superset of the utmp structure, with addi?

 tional fields, and larger versions of the existing fields, and parallel files are main?

 tained, often /var/*/utmpx and /var/*/wtmpx.

 Linux glibc on the other hand does not use a parallel utmpx file since its utmp structure

 is already large enough. The "x" functions listed above are just aliases for their coun?

 terparts without the "x" (e.g., getutxent() is an alias for getutent()).

NOTES

 Glibc notes

 The above functions are not thread-safe. Glibc adds reentrant versions

 #include <utmp.h>

 int getutent_r(struct utmp *ubuf, struct utmp **ubufp);

 int getutid_r(struct utmp *ut,

 struct utmp *ubuf, struct utmp **ubufp);

 int getutline_r(struct utmp *ut,

 struct utmp *ubuf, struct utmp **ubufp);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 getutent_r(), getutid_r(), getutline_r():

 _GNU_SOURCE

 || /* since glibc 2.19: */ _DEFAULT_SOURCE

 || /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

 These functions are GNU extensions, analogs of the functions of the same name without the

 _r suffix. The ubuf argument gives these functions a place to store their result. On

 success, they return 0, and a pointer to the result is written in *ubufp. On error, these

 functions return -1. There are no utmpx equivalents of the above functions. (POSIX.1

 does not specify such functions.)

EXAMPLES

 The following example adds and removes a utmp record, assuming it is run from within a

 pseudo terminal. For usage in a real application, you should check the return values of

 getpwuid(3) and ttyname(3). Page 4/6

 #include <string.h>

 #include <stdlib.h>

 #include <pwd.h>

 #include <unistd.h>

 #include <utmp.h>

 #include <time.h>

 int

 main(int argc, char *argv[])

 {

 struct utmp entry;

 system("echo before adding entry:;who");

 entry.ut_type = USER_PROCESS;

 entry.ut_pid = getpid();

 strcpy(entry.ut_line, ttyname(STDIN_FILENO) + strlen("/dev/"));

 /* only correct for ptys named /dev/tty[pqr][0-9a-z] */

 strcpy(entry.ut_id, ttyname(STDIN_FILENO) + strlen("/dev/tty"));

 time(&entry.ut_time);

 strcpy(entry.ut_user, getpwuid(getuid())->pw_name);

 memset(entry.ut_host, 0, UT_HOSTSIZE);

 entry.ut_addr = 0;

 setutent();

 pututline(&entry);

 system("echo after adding entry:;who");

 entry.ut_type = DEAD_PROCESS;

 memset(entry.ut_line, 0, UT_LINESIZE);

 entry.ut_time = 0;

 memset(entry.ut_user, 0, UT_NAMESIZE);

 setutent();

 pututline(&entry);

 system("echo after removing entry:;who");

 endutent();

 exit(EXIT_SUCCESS);

 } Page 5/6

SEE ALSO

 getutmp(3), utmp(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

 2020-06-09 GETUTENT(3)

Page 6/6

