
Rocky Enterprise Linux 9.2 Manual Pages on command 'epoll.7'

$ man epoll.7

EPOLL(7) Linux Programmer's Manual EPOLL(7)

NAME

 epoll - I/O event notification facility

SYNOPSIS

 #include <sys/epoll.h>

DESCRIPTION

 The epoll API performs a similar task to poll(2): monitoring multiple file descriptors to

 see if I/O is possible on any of them. The epoll API can be used either as an edge-trig?

 gered or a level-triggered interface and scales well to large numbers of watched file de?

 scriptors.

 The central concept of the epoll API is the epoll instance, an in-kernel data structure

 which, from a user-space perspective, can be considered as a container for two lists:

 ? The interest list (sometimes also called the epoll set): the set of file descriptors

 that the process has registered an interest in monitoring.

 ? The ready list: the set of file descriptors that are "ready" for I/O. The ready list is

 a subset of (or, more precisely, a set of references to) the file descriptors in the in?

 terest list. The ready list is dynamically populated by the kernel as a result of I/O

 activity on those file descriptors.

 The following system calls are provided to create and manage an epoll instance:

 ? epoll_create(2) creates a new epoll instance and returns a file descriptor referring to

 that instance. (The more recent epoll_create1(2) extends the functionality of

 epoll_create(2).)

 ? Interest in particular file descriptors is then registered via epoll_ctl(2), which adds Page 1/8

 items to the interest list of the epoll instance.

 ? epoll_wait(2) waits for I/O events, blocking the calling thread if no events are cur?

 rently available. (This system call can be thought of as fetching items from the ready

 list of the epoll instance.)

 Level-triggered and edge-triggered

 The epoll event distribution interface is able to behave both as edge-triggered (ET) and

 as level-triggered (LT). The difference between the two mechanisms can be described as

 follows. Suppose that this scenario happens:

 1. The file descriptor that represents the read side of a pipe (rfd) is registered on the

 epoll instance.

 2. A pipe writer writes 2 kB of data on the write side of the pipe.

 3. A call to epoll_wait(2) is done that will return rfd as a ready file descriptor.

 4. The pipe reader reads 1 kB of data from rfd.

 5. A call to epoll_wait(2) is done.

 If the rfd file descriptor has been added to the epoll interface using the EPOLLET (edge-

 triggered) flag, the call to epoll_wait(2) done in step 5 will probably hang despite the

 available data still present in the file input buffer; meanwhile the remote peer might be

 expecting a response based on the data it already sent. The reason for this is that edge-

 triggered mode delivers events only when changes occur on the monitored file descriptor.

 So, in step 5 the caller might end up waiting for some data that is already present inside

 the input buffer. In the above example, an event on rfd will be generated because of the

 write done in 2 and the event is consumed in 3. Since the read operation done in 4 does

 not consume the whole buffer data, the call to epoll_wait(2) done in step 5 might block

 indefinitely.

 An application that employs the EPOLLET flag should use nonblocking file descriptors to

 avoid having a blocking read or write starve a task that is handling multiple file de?

 scriptors. The suggested way to use epoll as an edge-triggered (EPOLLET) interface is as

 follows:

 a) with nonblocking file descriptors; and

 b) by waiting for an event only after read(2) or write(2) return EAGAIN.

 By contrast, when used as a level-triggered interface (the default, when EPOLLET is not

 specified), epoll is simply a faster poll(2), and can be used wherever the latter is used

 since it shares the same semantics. Page 2/8

 Since even with edge-triggered epoll, multiple events can be generated upon receipt of

 multiple chunks of data, the caller has the option to specify the EPOLLONESHOT flag, to

 tell epoll to disable the associated file descriptor after the receipt of an event with

 epoll_wait(2). When the EPOLLONESHOT flag is specified, it is the caller's responsibility

 to rearm the file descriptor using epoll_ctl(2) with EPOLL_CTL_MOD.

 If multiple threads (or processes, if child processes have inherited the epoll file de?

 scriptor across fork(2)) are blocked in epoll_wait(2) waiting on the same epoll file de?

 scriptor and a file descriptor in the interest list that is marked for edge-triggered

 (EPOLLET) notification becomes ready, just one of the threads (or processes) is awoken

 from epoll_wait(2). This provides a useful optimization for avoiding "thundering herd"

 wake-ups in some scenarios.

 Interaction with autosleep

 If the system is in autosleep mode via /sys/power/autosleep and an event happens which

 wakes the device from sleep, the device driver will keep the device awake only until that

 event is queued. To keep the device awake until the event has been processed, it is nec?

 essary to use the epoll_ctl(2) EPOLLWAKEUP flag.

 When the EPOLLWAKEUP flag is set in the events field for a struct epoll_event, the system

 will be kept awake from the moment the event is queued, through the epoll_wait(2) call

 which returns the event until the subsequent epoll_wait(2) call. If the event should keep

 the system awake beyond that time, then a separate wake_lock should be taken before the

 second epoll_wait(2) call.

 /proc interfaces

 The following interfaces can be used to limit the amount of kernel memory consumed by

 epoll:

 /proc/sys/fs/epoll/max_user_watches (since Linux 2.6.28)

 This specifies a limit on the total number of file descriptors that a user can reg?

 ister across all epoll instances on the system. The limit is per real user ID.

 Each registered file descriptor costs roughly 90 bytes on a 32-bit kernel, and

 roughly 160 bytes on a 64-bit kernel. Currently, the default value for

 max_user_watches is 1/25 (4%) of the available low memory, divided by the registra?

 tion cost in bytes.

 Example for suggested usage

 While the usage of epoll when employed as a level-triggered interface does have the same Page 3/8

 semantics as poll(2), the edge-triggered usage requires more clarification to avoid stalls

 in the application event loop. In this example, listener is a nonblocking socket on which

 listen(2) has been called. The function do_use_fd() uses the new ready file descriptor

 until EAGAIN is returned by either read(2) or write(2). An event-driven state machine ap?

 plication should, after having received EAGAIN, record its current state so that at the

 next call to do_use_fd() it will continue to read(2) or write(2) from where it stopped be?

 fore.

 #define MAX_EVENTS 10

 struct epoll_event ev, events[MAX_EVENTS];

 int listen_sock, conn_sock, nfds, epollfd;

 /* Code to set up listening socket, 'listen_sock',

 (socket(), bind(), listen()) omitted */

 epollfd = epoll_create1(0);

 if (epollfd == -1) {

 perror("epoll_create1");

 exit(EXIT_FAILURE);

 }

 ev.events = EPOLLIN;

 ev.data.fd = listen_sock;

 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, listen_sock, &ev) == -1) {

 perror("epoll_ctl: listen_sock");

 exit(EXIT_FAILURE);

 }

 for (;;) {

 nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1);

 if (nfds == -1) {

 perror("epoll_wait");

 exit(EXIT_FAILURE);

 }

 for (n = 0; n < nfds; ++n) {

 if (events[n].data.fd == listen_sock) {

 conn_sock = accept(listen_sock,

 (struct sockaddr *) &addr, &addrlen); Page 4/8

 if (conn_sock == -1) {

 perror("accept");

 exit(EXIT_FAILURE);

 }

 setnonblocking(conn_sock);

 ev.events = EPOLLIN | EPOLLET;

 ev.data.fd = conn_sock;

 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, conn_sock,

 &ev) == -1) {

 perror("epoll_ctl: conn_sock");

 exit(EXIT_FAILURE);

 }

 } else {

 do_use_fd(events[n].data.fd);

 }

 }

 }

 When used as an edge-triggered interface, for performance reasons, it is possible to add

 the file descriptor inside the epoll interface (EPOLL_CTL_ADD) once by specifying

 (EPOLLIN|EPOLLOUT). This allows you to avoid continuously switching between EPOLLIN and

 EPOLLOUT calling epoll_ctl(2) with EPOLL_CTL_MOD.

 Questions and answers

 0. What is the key used to distinguish the file descriptors registered in an interest

 list?

 The key is the combination of the file descriptor number and the open file description

 (also known as an "open file handle", the kernel's internal representation of an open

 file).

 1. What happens if you register the same file descriptor on an epoll instance twice?

 You will probably get EEXIST. However, it is possible to add a duplicate (dup(2),

 dup2(2), fcntl(2) F_DUPFD) file descriptor to the same epoll instance. This can be a

 useful technique for filtering events, if the duplicate file descriptors are regis?

 tered with different events masks.

 2. Can two epoll instances wait for the same file descriptor? If so, are events reported Page 5/8

 to both epoll file descriptors?

 Yes, and events would be reported to both. However, careful programming may be needed

 to do this correctly.

 3. Is the epoll file descriptor itself poll/epoll/selectable?

 Yes. If an epoll file descriptor has events waiting, then it will indicate as being

 readable.

 4. What happens if one attempts to put an epoll file descriptor into its own file de?

 scriptor set?

 The epoll_ctl(2) call fails (EINVAL). However, you can add an epoll file descriptor

 inside another epoll file descriptor set.

 5. Can I send an epoll file descriptor over a UNIX domain socket to another process?

 Yes, but it does not make sense to do this, since the receiving process would not have

 copies of the file descriptors in the interest list.

 6. Will closing a file descriptor cause it to be removed from all epoll interest lists?

 Yes, but be aware of the following point. A file descriptor is a reference to an open

 file description (see open(2)). Whenever a file descriptor is duplicated via dup(2),

 dup2(2), fcntl(2) F_DUPFD, or fork(2), a new file descriptor referring to the same

 open file description is created. An open file description continues to exist until

 all file descriptors referring to it have been closed.

 A file descriptor is removed from an interest list only after all the file descriptors

 referring to the underlying open file description have been closed. This means that

 even after a file descriptor that is part of an interest list has been closed, events

 may be reported for that file descriptor if other file descriptors referring to the

 same underlying file description remain open. To prevent this happening, the file de?

 scriptor must be explicitly removed from the interest list (using epoll_ctl(2)

 EPOLL_CTL_DEL) before it is duplicated. Alternatively, the application must ensure

 that all file descriptors are closed (which may be difficult if file descriptors were

 duplicated behind the scenes by library functions that used dup(2) or fork(2)).

 7. If more than one event occurs between epoll_wait(2) calls, are they combined or re?

 ported separately?

 They will be combined.

 8. Does an operation on a file descriptor affect the already collected but not yet re?

 ported events? Page 6/8

 You can do two operations on an existing file descriptor. Remove would be meaningless

 for this case. Modify will reread available I/O.

 9. Do I need to continuously read/write a file descriptor until EAGAIN when using the

 EPOLLET flag (edge-triggered behavior)?

 Receiving an event from epoll_wait(2) should suggest to you that such file descriptor

 is ready for the requested I/O operation. You must consider it ready until the next

 (nonblocking) read/write yields EAGAIN. When and how you will use the file descriptor

 is entirely up to you.

 For packet/token-oriented files (e.g., datagram socket, terminal in canonical mode),

 the only way to detect the end of the read/write I/O space is to continue to

 read/write until EAGAIN.

 For stream-oriented files (e.g., pipe, FIFO, stream socket), the condition that the

 read/write I/O space is exhausted can also be detected by checking the amount of data

 read from / written to the target file descriptor. For example, if you call read(2)

 by asking to read a certain amount of data and read(2) returns a lower number of

 bytes, you can be sure of having exhausted the read I/O space for the file descriptor.

 The same is true when writing using write(2). (Avoid this latter technique if you

 cannot guarantee that the monitored file descriptor always refers to a stream-oriented

 file.)

 Possible pitfalls and ways to avoid them

 o Starvation (edge-triggered)

 If there is a large amount of I/O space, it is possible that by trying to drain it the

 other files will not get processed causing starvation. (This problem is not specific to

 epoll.)

 The solution is to maintain a ready list and mark the file descriptor as ready in its as?

 sociated data structure, thereby allowing the application to remember which files need to

 be processed but still round robin amongst all the ready files. This also supports ignor?

 ing subsequent events you receive for file descriptors that are already ready.

 o If using an event cache...

 If you use an event cache or store all the file descriptors returned from epoll_wait(2),

 then make sure to provide a way to mark its closure dynamically (i.e., caused by a previ?

 ous event's processing). Suppose you receive 100 events from epoll_wait(2), and in event

 #47 a condition causes event #13 to be closed. If you remove the structure and close(2) Page 7/8

 the file descriptor for event #13, then your event cache might still say there are events

 waiting for that file descriptor causing confusion.

 One solution for this is to call, during the processing of event 47,

 epoll_ctl(EPOLL_CTL_DEL) to delete file descriptor 13 and close(2), then mark its associ?

 ated data structure as removed and link it to a cleanup list. If you find another event

 for file descriptor 13 in your batch processing, you will discover the file descriptor had

 been previously removed and there will be no confusion.

VERSIONS

 The epoll API was introduced in Linux kernel 2.5.44. Support was added to glibc in ver?

 sion 2.3.2.

CONFORMING TO

 The epoll API is Linux-specific. Some other systems provide similar mechanisms, for exam?

 ple, FreeBSD has kqueue, and Solaris has /dev/poll.

NOTES

 The set of file descriptors that is being monitored via an epoll file descriptor can be

 viewed via the entry for the epoll file descriptor in the process's /proc/[pid]/fdinfo di?

 rectory. See proc(5) for further details.

 The kcmp(2) KCMP_EPOLL_TFD operation can be used to test whether a file descriptor is

 present in an epoll instance.

SEE ALSO

 epoll_create(2), epoll_create1(2), epoll_ctl(2), epoll_wait(2), poll(2), select(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 EPOLL(7)

Page 8/8

