
Rocky Enterprise Linux 9.2 Manual Pages on command 'execlp.3'

$ man execlp.3

EXEC(3) Linux Programmer's Manual EXEC(3)

NAME

 execl, execlp, execle, execv, execvp, execvpe - execute a file

SYNOPSIS

 #include <unistd.h>

 extern char **environ;

 int execl(const char *pathname, const char *arg, ...

 /* (char *) NULL */);

 int execlp(const char *file, const char *arg, ...

 /* (char *) NULL */);

 int execle(const char *pathname, const char *arg, ...

 /*, (char *) NULL, char *const envp[] */);

 int execv(const char *pathname, char *const argv[]);

 int execvp(const char *file, char *const argv[]);

 int execvpe(const char *file, char *const argv[],

 char *const envp[]);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 execvpe(): _GNU_SOURCE

DESCRIPTION

 The exec() family of functions replaces the current process image with a new process im?

 age. The functions described in this manual page are layered on top of execve(2). (See

 the manual page for execve(2) for further details about the replacement of the current

 process image.) Page 1/4

 The initial argument for these functions is the name of a file that is to be executed.

 The functions can be grouped based on the letters following the "exec" prefix.

 l - execl(), execlp(), execle()

 The const char *arg and subsequent ellipses can be thought of as arg0, arg1, ..., argn.

 Together they describe a list of one or more pointers to null-terminated strings that rep?

 resent the argument list available to the executed program. The first argument, by con?

 vention, should point to the filename associated with the file being executed. The list

 of arguments must be terminated by a null pointer, and, since these are variadic func?

 tions, this pointer must be cast (char *) NULL.

 By contrast with the 'l' functions, the 'v' functions (below) specify the command-line ar?

 guments of the executed program as a vector.

 v - execv(), execvp(), execvpe()

 The char *const argv[] argument is an array of pointers to null-terminated strings that

 represent the argument list available to the new program. The first argument, by conven?

 tion, should point to the filename associated with the file being executed. The array of

 pointers must be terminated by a null pointer.

 e - execle(), execvpe()

 The environment of the caller is specified via the argument envp. The envp argument is an

 array of pointers to null-terminated strings and must be terminated by a null pointer.

 All other exec() functions (which do not include 'e' in the suffix) take the environment

 for the new process image from the external variable environ in the calling process.

 p - execlp(), execvp(), execvpe()

 These functions duplicate the actions of the shell in searching for an executable file if

 the specified filename does not contain a slash (/) character. The file is sought in the

 colon-separated list of directory pathnames specified in the PATH environment variable.

 If this variable isn't defined, the path list defaults to a list that includes the direc?

 tories returned by confstr(_CS_PATH) (which typically returns the value "/bin:/usr/bin")

 and possibly also the current working directory; see NOTES for further details.

 If the specified filename includes a slash character, then PATH is ignored, and the file

 at the specified pathname is executed.

 In addition, certain errors are treated specially.

 If permission is denied for a file (the attempted execve(2) failed with the error EACCES),

 these functions will continue searching the rest of the search path. If no other file is Page 2/4

 found, however, they will return with errno set to EACCES.

 If the header of a file isn't recognized (the attempted execve(2) failed with the error

 ENOEXEC), these functions will execute the shell (/bin/sh) with the path of the file as

 its first argument. (If this attempt fails, no further searching is done.)

 All other exec() functions (which do not include 'p' in the suffix) take as their first

 argument a (relative or absolute) pathname that identifies the program to be executed.

RETURN VALUE

 The exec() functions return only if an error has occurred. The return value is -1, and

 errno is set to indicate the error.

ERRORS

 All of these functions may fail and set errno for any of the errors specified for ex?

 ecve(2).

VERSIONS

 The execvpe() function first appeared in glibc 2.11.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?execl(), execle(), execv() ? Thread safety ? MT-Safe ?

 ??

 ?execlp(), execvp(), execvpe() ? Thread safety ? MT-Safe env ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

 The execvpe() function is a GNU extension.

NOTES

 The default search path (used when the environment does not contain the variable PATH)

 shows some variation across systems. It generally includes /bin and /usr/bin (in that or?

 der) and may also include the current working directory. On some other systems, the cur?

 rent working is included after /bin and /usr/bin, as an anti-Trojan-horse measure. The

 glibc implementation long followed the traditional default where the current working di?

 rectory is included at the start of the search path. However, some code refactoring dur? Page 3/4

 ing the development of glibc 2.24 caused the current working directory to be dropped alto?

 gether from the default search path. This accidental behavior change is considered mildly

 beneficial, and won't be reverted.

 The behavior of execlp() and execvp() when errors occur while attempting to execute the

 file is historic practice, but has not traditionally been documented and is not specified

 by the POSIX standard. BSD (and possibly other systems) do an automatic sleep and retry

 if ETXTBSY is encountered. Linux treats it as a hard error and returns immediately.

 Traditionally, the functions execlp() and execvp() ignored all errors except for the ones

 described above and ENOMEM and E2BIG, upon which they returned. They now return if any

 error other than the ones described above occurs.

BUGS

 Before glibc 2.24, execl() and execle() employed realloc(3) internally and were conse?

 quently not async-signal-safe, in violation of the requirements of POSIX.1. This was

 fixed in glibc 2.24.

 Architecture-specific details

 On sparc and sparc64, execv() is provided as a system call by the kernel (with the proto?

 type shown above) for compatibility with SunOS. This function is not employed by the ex?

 ecv() wrapper function on those architectures.

SEE ALSO

 sh(1), execve(2), execveat(2), fork(2), ptrace(2), fexecve(3), system(3), environ(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2019-08-02 EXEC(3)

Page 4/4

