
Rocky Enterprise Linux 9.2 Manual Pages on command 'fanotify_mark.2'

$ man fanotify_mark.2

FANOTIFY_MARK(2) Linux Programmer's Manual FANOTIFY_MARK(2)

NAME

 fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object

SYNOPSIS

 #include <sys/fanotify.h>

 int fanotify_mark(int fanotify_fd, unsigned int flags,

 uint64_t mask, int dirfd, const char *pathname);

DESCRIPTION

 For an overview of the fanotify API, see fanotify(7).

 fanotify_mark() adds, removes, or modifies an fanotify mark on a filesystem object. The

 caller must have read permission on the filesystem object that is to be marked.

 The fanotify_fd argument is a file descriptor returned by fanotify_init(2).

 flags is a bit mask describing the modification to perform. It must include exactly one

 of the following values:

 FAN_MARK_ADD

 The events in mask will be added to the mark mask (or to the ignore mask). mask

 must be nonempty or the error EINVAL will occur.

 FAN_MARK_REMOVE

 The events in argument mask will be removed from the mark mask (or from the ignore

 mask). mask must be nonempty or the error EINVAL will occur.

 FAN_MARK_FLUSH

 Remove either all marks for filesystems, all marks for mounts, or all marks for di?

 rectories and files from the fanotify group. If flags contains FAN_MARK_MOUNT, all Page 1/7

 marks for mounts are removed from the group. If flags contains FAN_MARK_FILESYS?

 TEM, all marks for filesystems are removed from the group. Otherwise, all marks

 for directories and files are removed. No flag other than and at most one of the

 flags FAN_MARK_MOUNT or FAN_MARK_FILESYSTEM can be used in conjunction with

 FAN_MARK_FLUSH. mask is ignored.

 If none of the values above is specified, or more than one is specified, the call fails

 with the error EINVAL.

 In addition, zero or more of the following values may be ORed into flags:

 FAN_MARK_DONT_FOLLOW

 If pathname is a symbolic link, mark the link itself, rather than the file to which

 it refers. (By default, fanotify_mark() dereferences pathname if it is a symbolic

 link.)

 FAN_MARK_ONLYDIR

 If the filesystem object to be marked is not a directory, the error ENOTDIR shall

 be raised.

 FAN_MARK_MOUNT

 Mark the mount point specified by pathname. If pathname is not itself a mount

 point, the mount point containing pathname will be marked. All directories, subdi?

 rectories, and the contained files of the mount point will be monitored. The

 events which require that filesystem objects are identified by file handles, such

 as FAN_CREATE, FAN_ATTRIB, FAN_MOVE, and FAN_DELETE_SELF, cannot be provided as a

 mask when flags contains FAN_MARK_MOUNT. Attempting to do so will result in the

 error EINVAL being returned.

 FAN_MARK_FILESYSTEM (since Linux 4.20)

 Mark the filesystem specified by pathname. The filesystem containing pathname will

 be marked. All the contained files and directories of the filesystem from any

 mount point will be monitored.

 FAN_MARK_IGNORED_MASK

 The events in mask shall be added to or removed from the ignore mask.

 FAN_MARK_IGNORED_SURV_MODIFY

 The ignore mask shall survive modify events. If this flag is not set, the ignore

 mask is cleared when a modify event occurs for the ignored file or directory.

 mask defines which events shall be listened for (or which shall be ignored). It is a bit Page 2/7

 mask composed of the following values:

 FAN_ACCESS

 Create an event when a file or directory (but see BUGS) is accessed (read).

 FAN_MODIFY

 Create an event when a file is modified (write).

 FAN_CLOSE_WRITE

 Create an event when a writable file is closed.

 FAN_CLOSE_NOWRITE

 Create an event when a read-only file or directory is closed.

 FAN_OPEN

 Create an event when a file or directory is opened.

 FAN_OPEN_EXEC (since Linux 5.0)

 Create an event when a file is opened with the intent to be executed. See NOTES

 for additional details.

 FAN_ATTRIB (since Linux 5.1)

 Create an event when the metadata for a file or directory has changed. An fanotify

 group that identifies filesystem objects by file handles is required.

 FAN_CREATE (since Linux 5.1)

 Create an event when a file or directory has been created in a marked parent direc?

 tory. An fanotify group that identifies filesystem objects by file handles is re?

 quired.

 FAN_DELETE (since Linux 5.1)

 Create an event when a file or directory has been deleted in a marked parent direc?

 tory. An fanotify group that identifies filesystem objects by file handles is re?

 quired.

 FAN_DELETE_SELF (since Linux 5.1)

 Create an event when a marked file or directory itself is deleted. An fanotify

 group that identifies filesystem objects by file handles is required.

 FAN_MOVED_FROM (since Linux 5.1)

 Create an event when a file or directory has been moved from a marked parent direc?

 tory. An fanotify group that identifies filesystem objects by file handles is re?

 quired.

 FAN_MOVED_TO (since Linux 5.1) Page 3/7

 Create an event when a file or directory has been moved to a marked parent direc?

 tory. An fanotify group that identifies filesystem objects by file handles is re?

 quired.

 FAN_MOVE_SELF (since Linux 5.1)

 Create an event when a marked file or directory itself has been moved. An fanotify

 group that identifies filesystem objects by file handles is required.

 FAN_OPEN_PERM

 Create an event when a permission to open a file or directory is requested. An

 fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or FAN_CLASS_CONTENT is

 required.

 FAN_OPEN_EXEC_PERM (since Linux 5.0)

 Create an event when a permission to open a file for execution is requested. An

 fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or FAN_CLASS_CONTENT is

 required. See NOTES for additional details.

 FAN_ACCESS_PERM

 Create an event when a permission to read a file or directory is requested. An

 fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or FAN_CLASS_CONTENT is

 required.

 FAN_ONDIR

 Create events for directories?for example, when opendir(3), readdir(3) (but see

 BUGS), and closedir(3) are called. Without this flag, events are created only for

 files. In the context of directory entry events, such as FAN_CREATE, FAN_DELETE,

 FAN_MOVED_FROM, and FAN_MOVED_TO, specifying the flag FAN_ONDIR is required in or?

 der to create events when subdirectory entries are modified (i.e., mkdir(2)/

 rmdir(2)).

 FAN_EVENT_ON_CHILD

 Events for the immediate children of marked directories shall be created. The flag

 has no effect when marking mounts and filesystems. Note that events are not gener?

 ated for children of the subdirectories of marked directories. More specifically,

 the directory entry modification events FAN_CREATE, FAN_DELETE, FAN_MOVED_FROM, and

 FAN_MOVED_TO are not generated for any entry modifications performed inside subdi?

 rectories of marked directories. Note that the events FAN_DELETE_SELF and

 FAN_MOVE_SELF are not generated for children of marked directories. To monitor Page 4/7

 complete directory trees it is necessary to mark the relevant mount or filesystem.

 The following composed values are defined:

 FAN_CLOSE

 A file is closed (FAN_CLOSE_WRITE|FAN_CLOSE_NOWRITE).

 FAN_MOVE

 A file or directory has been moved (FAN_MOVED_FROM|FAN_MOVED_TO).

 The filesystem object to be marked is determined by the file descriptor dirfd and the

 pathname specified in pathname:

 * If pathname is NULL, dirfd defines the filesystem object to be marked.

 * If pathname is NULL, and dirfd takes the special value AT_FDCWD, the current working

 directory is to be marked.

 * If pathname is absolute, it defines the filesystem object to be marked, and dirfd is

 ignored.

 * If pathname is relative, and dirfd does not have the value AT_FDCWD, then the filesys?

 tem object to be marked is determined by interpreting pathname relative the directory

 referred to by dirfd.

 * If pathname is relative, and dirfd has the value AT_FDCWD, then the filesystem object

 to be marked is determined by interpreting pathname relative the current working direc?

 tory.

RETURN VALUE

 On success, fanotify_mark() returns 0. On error, -1 is returned, and errno is set to in?

 dicate the error.

ERRORS

 EBADF An invalid file descriptor was passed in fanotify_fd.

 EINVAL An invalid value was passed in flags or mask, or fanotify_fd was not an fanotify

 file descriptor.

 EINVAL The fanotify file descriptor was opened with FAN_CLASS_NOTIF or the fanotify group

 identifies filesystem objects by file handles and mask contains a flag for permis?

 sion events (FAN_OPEN_PERM or FAN_ACCESS_PERM).

 ENODEV The filesystem object indicated by pathname is not associated with a filesystem

 that supports fsid (e.g., tmpfs(5)). This error can be returned only with an fan?

 otify group that identifies filesystem objects by file handles.

 ENOENT The filesystem object indicated by dirfd and pathname does not exist. This error Page 5/7

 also occurs when trying to remove a mark from an object which is not marked.

 ENOMEM The necessary memory could not be allocated.

 ENOSPC The number of marks exceeds the limit of 8192 and the FAN_UNLIMITED_MARKS flag was

 not specified when the fanotify file descriptor was created with fanotify_init(2).

 ENOSYS This kernel does not implement fanotify_mark(). The fanotify API is available only

 if the kernel was configured with CONFIG_FANOTIFY.

 ENOTDIR

 flags contains FAN_MARK_ONLYDIR, and dirfd and pathname do not specify a directory.

 EOPNOTSUPP

 The object indicated by pathname is associated with a filesystem that does not sup?

 port the encoding of file handles. This error can be returned only with an fan?

 otify group that identifies filesystem objects by file handles.

 EXDEV The filesystem object indicated by pathname resides within a filesystem subvolume

 (e.g., btrfs(5)) which uses a different fsid than its root superblock. This error

 can be returned only with an fanotify group that identifies filesystem objects by

 file handles.

VERSIONS

 fanotify_mark() was introduced in version 2.6.36 of the Linux kernel and enabled in ver?

 sion 2.6.37.

CONFORMING TO

 This system call is Linux-specific.

NOTES

 FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM

 When using either FAN_OPEN_EXEC or FAN_OPEN_EXEC_PERM within the mask, events of these

 types will be returned only when the direct execution of a program occurs. More specifi?

 cally, this means that events of these types will be generated for files that are opened

 using execve(2), execveat(2), or uselib(2). Events of these types will not be raised in

 the situation where an interpreter is passed (or reads) a file for interpretation.

 Additionally, if a mark has also been placed on the Linux dynamic linker, a user should

 also expect to receive an event for it when an ELF object has been successfully opened us?

 ing execve(2) or execveat(2).

 For example, if the following ELF binary were to be invoked and a FAN_OPEN_EXEC mark has

 been placed on /: Page 6/7

 $ /bin/echo foo

 The listening application in this case would receive FAN_OPEN_EXEC events for both the ELF

 binary and interpreter, respectively:

 /bin/echo

 /lib64/ld-linux-x86-64.so.2

BUGS

 The following bugs were present in Linux kernels before version 3.16:

 * If flags contains FAN_MARK_FLUSH, dirfd, and pathname must specify a valid filesystem

 object, even though this object is not used.

 * readdir(2) does not generate a FAN_ACCESS event.

 * If fanotify_mark() is called with FAN_MARK_FLUSH, flags is not checked for invalid val?

 ues.

SEE ALSO

 fanotify_init(2), fanotify(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 FANOTIFY_MARK(2)

Page 7/7

