
Rocky Enterprise Linux 9.2 Manual Pages on command 'flock.2'

$ man flock.2

FLOCK(2) Linux Programmer's Manual FLOCK(2)

NAME

 flock - apply or remove an advisory lock on an open file

SYNOPSIS

 #include <sys/file.h>

 int flock(int fd, int operation);

DESCRIPTION

 Apply or remove an advisory lock on the open file specified by fd. The argument operation

 is one of the following:

 LOCK_SH Place a shared lock. More than one process may hold a shared lock for a

 given file at a given time.

 LOCK_EX Place an exclusive lock. Only one process may hold an exclusive lock for a

 given file at a given time.

 LOCK_UN Remove an existing lock held by this process.

 A call to flock() may block if an incompatible lock is held by another process. To make a

 nonblocking request, include LOCK_NB (by ORing) with any of the above operations.

 A single file may not simultaneously have both shared and exclusive locks.

 Locks created by flock() are associated with an open file description (see open(2)). This

 means that duplicate file descriptors (created by, for example, fork(2) or dup(2)) refer

 to the same lock, and this lock may be modified or released using any of these file de?

 scriptors. Furthermore, the lock is released either by an explicit LOCK_UN operation on

 any of these duplicate file descriptors, or when all such file descriptors have been

 closed. Page 1/3

 If a process uses open(2) (or similar) to obtain more than one file descriptor for the

 same file, these file descriptors are treated independently by flock(). An attempt to

 lock the file using one of these file descriptors may be denied by a lock that the calling

 process has already placed via another file descriptor.

 A process may hold only one type of lock (shared or exclusive) on a file. Subsequent

 flock() calls on an already locked file will convert an existing lock to the new lock

 mode.

 Locks created by flock() are preserved across an execve(2).

 A shared or exclusive lock can be placed on a file regardless of the mode in which the

 file was opened.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EBADF fd is not an open file descriptor.

 EINTR While waiting to acquire a lock, the call was interrupted by delivery of a signal

 caught by a handler; see signal(7).

 EINVAL operation is invalid.

 ENOLCK The kernel ran out of memory for allocating lock records.

 EWOULDBLOCK

 The file is locked and the LOCK_NB flag was selected.

CONFORMING TO

 4.4BSD (the flock() call first appeared in 4.2BSD). A version of flock(), possibly imple?

 mented in terms of fcntl(2), appears on most UNIX systems.

NOTES

 Since kernel 2.0, flock() is implemented as a system call in its own right rather than be?

 ing emulated in the GNU C library as a call to fcntl(2). With this implementation, there

 is no interaction between the types of lock placed by flock() and fcntl(2), and flock()

 does not detect deadlock. (Note, however, that on some systems, such as the modern BSDs,

 flock() and fcntl(2) locks do interact with one another.)

 flock() places advisory locks only; given suitable permissions on a file, a process is

 free to ignore the use of flock() and perform I/O on the file.

 flock() and fcntl(2) locks have different semantics with respect to forked processes and

 dup(2). On systems that implement flock() using fcntl(2), the semantics of flock() will Page 2/3

 be different from those described in this manual page.

 Converting a lock (shared to exclusive, or vice versa) is not guaranteed to be atomic: the

 existing lock is first removed, and then a new lock is established. Between these two

 steps, a pending lock request by another process may be granted, with the result that the

 conversion either blocks, or fails if LOCK_NB was specified. (This is the original BSD

 behavior, and occurs on many other implementations.)

 NFS details

 In Linux kernels up to 2.6.11, flock() does not lock files over NFS (i.e., the scope of

 locks was limited to the local system). Instead, one could use fcntl(2) byte-range lock?

 ing, which does work over NFS, given a sufficiently recent version of Linux and a server

 which supports locking.

 Since Linux 2.6.12, NFS clients support flock() locks by emulating them as fcntl(2) byte-

 range locks on the entire file. This means that fcntl(2) and flock() locks do interact

 with one another over NFS. It also means that in order to place an exclusive lock, the

 file must be opened for writing.

 Since Linux 2.6.37, the kernel supports a compatibility mode that allows flock() locks

 (and also fcntl(2) byte region locks) to be treated as local; see the discussion of the

 local_lock option in nfs(5).

SEE ALSO

 flock(1), close(2), dup(2), execve(2), fcntl(2), fork(2), open(2), lockf(3), lslocks(8)

 Documentation/filesystems/locks.txt in the Linux kernel source tree (Documenta?

 tion/locks.txt in older kernels)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 FLOCK(2)

Page 3/3

