
Rocky Enterprise Linux 9.2 Manual Pages on command 'free.3'

$ man free.3

MALLOC(3) Linux Programmer's Manual MALLOC(3)

NAME

 malloc, free, calloc, realloc, reallocarray - allocate and free dynamic memory

SYNOPSIS

 #include <stdlib.h>

 void *malloc(size_t size);

 void free(void *ptr);

 void *calloc(size_t nmemb, size_t size);

 void *realloc(void *ptr, size_t size);

 void *reallocarray(void *ptr, size_t nmemb, size_t size);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 reallocarray():

 Since glibc 2.29:

 _DEFAULT_SOURCE

 Glibc 2.28 and earlier:

 _GNU_SOURCE

DESCRIPTION

 The malloc() function allocates size bytes and returns a pointer to the allocated memory.

 The memory is not initialized. If size is 0, then malloc() returns either NULL, or a

 unique pointer value that can later be successfully passed to free().

 The free() function frees the memory space pointed to by ptr, which must have been re?

 turned by a previous call to malloc(), calloc(), or realloc(). Otherwise, or if free(ptr)

 has already been called before, undefined behavior occurs. If ptr is NULL, no operation Page 1/4

 is performed.

 The calloc() function allocates memory for an array of nmemb elements of size bytes each

 and returns a pointer to the allocated memory. The memory is set to zero. If nmemb or

 size is 0, then calloc() returns either NULL, or a unique pointer value that can later be

 successfully passed to free(). If the multiplication of nmemb and size would result in

 integer overflow, then calloc() returns an error. By contrast, an integer overflow would

 not be detected in the following call to malloc(), with the result that an incorrectly

 sized block of memory would be allocated:

 malloc(nmemb * size);

 The realloc() function changes the size of the memory block pointed to by ptr to size

 bytes. The contents will be unchanged in the range from the start of the region up to the

 minimum of the old and new sizes. If the new size is larger than the old size, the added

 memory will not be initialized. If ptr is NULL, then the call is equivalent to mal?

 loc(size), for all values of size; if size is equal to zero, and ptr is not NULL, then the

 call is equivalent to free(ptr). Unless ptr is NULL, it must have been returned by an

 earlier call to malloc(), calloc(), or realloc(). If the area pointed to was moved, a

 free(ptr) is done.

 The reallocarray() function changes the size of the memory block pointed to by ptr to be

 large enough for an array of nmemb elements, each of which is size bytes. It is equiva?

 lent to the call

 realloc(ptr, nmemb * size);

 However, unlike that realloc() call, reallocarray() fails safely in the case where the

 multiplication would overflow. If such an overflow occurs, reallocarray() returns NULL,

 sets errno to ENOMEM, and leaves the original block of memory unchanged.

RETURN VALUE

 The malloc() and calloc() functions return a pointer to the allocated memory, which is

 suitably aligned for any built-in type. On error, these functions return NULL. NULL may

 also be returned by a successful call to malloc() with a size of zero, or by a successful

 call to calloc() with nmemb or size equal to zero.

 The free() function returns no value.

 The realloc() function returns a pointer to the newly allocated memory, which is suitably

 aligned for any built-in type, or NULL if the request failed. The returned pointer may be

 the same as ptr if the allocation was not moved (e.g., there was room to expand the allo? Page 2/4

 cation in-place), or different from ptr if the allocation was moved to a new address. If

 size was equal to 0, either NULL or a pointer suitable to be passed to free() is returned.

 If realloc() fails, the original block is left untouched; it is not freed or moved.

 On success, the reallocarray() function returns a pointer to the newly allocated memory.

 On failure, it returns NULL and the original block of memory is left untouched.

ERRORS

 calloc(), malloc(), realloc(), and reallocarray() can fail with the following error:

 ENOMEM Out of memory. Possibly, the application hit the RLIMIT_AS or RLIMIT_DATA limit

 described in getrlimit(2).

VERSIONS

 reallocarray() first appeared in glibc in version 2.26.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?malloc(), free(), ? Thread safety ? MT-Safe ?

 ?calloc(), realloc() ? ? ?

 ???

CONFORMING TO

 malloc(), free(), calloc(), realloc(): POSIX.1-2001, POSIX.1-2008, C89, C99.

 reallocarray() is a nonstandard extension that first appeared in OpenBSD 5.6 and FreeBSD

 11.0.

NOTES

 By default, Linux follows an optimistic memory allocation strategy. This means that when

 malloc() returns non-NULL there is no guarantee that the memory really is available. In

 case it turns out that the system is out of memory, one or more processes will be killed

 by the OOM killer. For more information, see the description of /proc/sys/vm/overcom?

 mit_memory and /proc/sys/vm/oom_adj in proc(5), and the Linux kernel source file Documen?

 tation/vm/overcommit-accounting.rst.

 Normally, malloc() allocates memory from the heap, and adjusts the size of the heap as re?

 quired, using sbrk(2). When allocating blocks of memory larger than MMAP_THRESHOLD bytes,

 the glibc malloc() implementation allocates the memory as a private anonymous mapping us? Page 3/4

 ing mmap(2). MMAP_THRESHOLD is 128 kB by default, but is adjustable using mallopt(3).

 Prior to Linux 4.7 allocations performed using mmap(2) were unaffected by the RLIMIT_DATA

 resource limit; since Linux 4.7, this limit is also enforced for allocations performed us?

 ing mmap(2).

 To avoid corruption in multithreaded applications, mutexes are used internally to protect

 the memory-management data structures employed by these functions. In a multithreaded ap?

 plication in which threads simultaneously allocate and free memory, there could be con?

 tention for these mutexes. To scalably handle memory allocation in multithreaded applica?

 tions, glibc creates additional memory allocation arenas if mutex contention is detected.

 Each arena is a large region of memory that is internally allocated by the system (using

 brk(2) or mmap(2)), and managed with its own mutexes.

 SUSv2 requires malloc(), calloc(), and realloc() to set errno to ENOMEM upon failure.

 Glibc assumes that this is done (and the glibc versions of these routines do this); if you

 use a private malloc implementation that does not set errno, then certain library routines

 may fail without having a reason in errno.

 Crashes in malloc(), calloc(), realloc(), or free() are almost always related to heap cor?

 ruption, such as overflowing an allocated chunk or freeing the same pointer twice.

 The malloc() implementation is tunable via environment variables; see mallopt(3) for de?

 tails.

SEE ALSO

 valgrind(1), brk(2), mmap(2), alloca(3), malloc_get_state(3), malloc_info(3),

 malloc_trim(3), malloc_usable_size(3), mallopt(3), mcheck(3), mtrace(3), posix_memalign(3)

 For details of the GNU C library implementation, see

 ?https://sourceware.org/glibc/wiki/MallocInternals?.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-06-09 MALLOC(3)

Page 4/4

