PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'free.3'

$ man free.3
MALLOC(3) Linux Programmer's Manual MALLOC(3)
NAME

malloc, free, calloc, realloc, reallocarray - allocate and free dynamic memory
SYNOPSIS

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

void *reallocarray(void *ptr, size_t nmemb, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
reallocarray():
Since glibc 2.29:
_DEFAULT_SOURCE
Glibc 2.28 and earlier:
_GNU_SOURCE

DESCRIPTION

The malloc() function allocates size bytes and returns a pointer to the allocated memory.

The memory is not initialized. If size is 0, then malloc() returns either NULL, or a

unique pointer value that can later be successfully passed to free().

The free() function frees the memory space pointed to by ptr, which must have been re?

turned by a previous call to malloc(), calloc(), or realloc(). Otherwise, or if free(ptr)

has already been called before, undefined behavior occurs. If ptris NULL, no operation Page 1/4

is performed.
The calloc() function allocates memory for an array of nmemb elements of size bytes each
and returns a pointer to the allocated memory. The memory is set to zero. If nmemb or
size is 0, then calloc() returns either NULL, or a unique pointer value that can later be
successfully passed to free(). If the multiplication of nmemb and size would result in
integer overflow, then calloc() returns an error. By contrast, an integer overflow would
not be detected in the following call to malloc(), with the result that an incorrectly
sized block of memory would be allocated:
malloc(nmemb * size);
The realloc() function changes the size of the memory block pointed to by ptr to size
bytes. The contents will be unchanged in the range from the start of the region up to the
minimum of the old and new sizes. If the new size is larger than the old size, the added
memory will not be initialized. If ptris NULL, then the call is equivalent to mal?
loc(size), for all values of size; if size is equal to zero, and ptr is not NULL, then the
call is equivalent to free(ptr). Unless ptr is NULL, it must have been returned by an
earlier call to malloc(), calloc(), or realloc(). If the area pointed to was moved, a
free(ptr) is done.
The reallocarray() function changes the size of the memory block pointed to by ptr to be
large enough for an array of nmemb elements, each of which is size bytes. It is equiva?
lent to the call
realloc(ptr, nmemb * size);

However, unlike that realloc() call, reallocarray() fails safely in the case where the
multiplication would overflow. If such an overflow occurs, reallocarray() returns NULL,
sets errno to ENOMEM, and leaves the original block of memory unchanged.

RETURN VALUE
The malloc() and calloc() functions return a pointer to the allocated memory, which is
suitably aligned for any built-in type. On error, these functions return NULL. NULL may
also be returned by a successful call to malloc() with a size of zero, or by a successful
call to calloc() with nmemb or size equal to zero.
The free() function returns no value.
The realloc() function returns a pointer to the newly allocated memory, which is suitably
aligned for any built-in type, or NULL if the request failed. The returned pointer may be

the same as ptr if the allocation was not moved (e.g., there was room to expand the allo? Page 2/4

cation in-place), or different from ptr if the allocation was moved to a new address. If
size was equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
If realloc() fails, the original block is left untouched; it is not freed or moved.
On success, the reallocarray() function returns a pointer to the newly allocated memory.
On failure, it returns NULL and the original block of memory is left untouched.

ERRORS
calloc(), malloc(), realloc(), and reallocarray() can fail with the following error:
ENOMEM Out of memory. Possibly, the application hit the RLIMIT_AS or RLIMIT_DATA limit

described in getrlimit(2).

VERSIONS
reallocarray() first appeared in glibc in version 2.26.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 2?7????77?7???7???7?7??7??7?7?77?7?7?7

?Interface ? Attribute ? Value ?

PPV 77?77???7?7??7?7??7?7?7?7?7?7?7?7?7

?malloc(), free(), ? Thread safety ? MT-Safe ?

?calloc(), realloc() ? ? ?

PPV 7?????7?7??7?7??7?7?7?7?7?7?7?77

CONFORMING TO
malloc(), free(), calloc(), realloc(): POSIX.1-2001, POSIX.1-2008, C89, C99.
reallocarray() is a nonstandard extension that first appeared in OpenBSD 5.6 and FreeBSD
11.0.

NOTES
By default, Linux follows an optimistic memory allocation strategy. This means that when
malloc() returns non-NULL there is no guarantee that the memory really is available. In
case it turns out that the system is out of memory, one or more processes will be killed
by the OOM Kkiller. For more information, see the description of /proc/sys/vm/overcom?
mit_memory and /proc/sys/vm/oom_adj in proc(5), and the Linux kernel source file Documen?
tation/vm/overcommit-accounting.rst.
Normally, malloc() allocates memory from the heap, and adjusts the size of the heap as re?
quired, using sbrk(2). When allocating blocks of memory larger than MMAP_THRESHOLD bytes,

the glibc malloc() implementation allocates the memory as a private anonymous mapping us? Page 3/4

ing mmap(2). MMAP_THRESHOLD is 128 kB by default, but is adjustable using mallopt(3).
Prior to Linux 4.7 allocations performed using mmap(2) were unaffected by the RLIMIT_DATA
resource limit; since Linux 4.7, this limit is also enforced for allocations performed us?
ing mmap(2).
To avoid corruption in multithreaded applications, mutexes are used internally to protect
the memory-management data structures employed by these functions. In a multithreaded ap?
plication in which threads simultaneously allocate and free memory, there could be con?
tention for these mutexes. To scalably handle memory allocation in multithreaded applica?
tions, glibc creates additional memory allocation arenas if mutex contention is detected.
Each arena is a large region of memory that is internally allocated by the system (using
brk(2) or mmap(2)), and managed with its own mutexes.
SUSV2 requires malloc(), calloc(), and realloc() to set errno to ENOMEM upon failure.
Glibc assumes that this is done (and the glibc versions of these routines do this); if you
use a private malloc implementation that does not set errno, then certain library routines
may fail without having a reason in errno.
Crashes in malloc(), calloc(), realloc(), or free() are almost always related to heap cor?
ruption, such as overflowing an allocated chunk or freeing the same pointer twice.
The malloc() implementation is tunable via environment variables; see mallopt(3) for de?
tails.

SEE ALSO
valgrind(1), brk(2), mmap(2), alloca(3), malloc_get_state(3), malloc_info(3),
malloc_trim(3), malloc_usable_size(3), mallopt(3), mcheck(3), mtrace(3), posix_memalign(3)
For details of the GNU C library implementation, see
?https://sourceware.org/glibc/wiki/Mallocinternals?.

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-06-09 MALLOC(3)

Page 4/4

