
Rocky Enterprise Linux 9.2 Manual Pages on command 'ftruncate.2'

$ man ftruncate.2

TRUNCATE(2) Linux Programmer's Manual TRUNCATE(2)

NAME

 truncate, ftruncate - truncate a file to a specified length

SYNOPSIS

 #include <unistd.h>

 #include <sys/types.h>

 int truncate(const char *path, off_t length);

 int ftruncate(int fd, off_t length);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 truncate():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 ftruncate():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.3.5: */ _POSIX_C_SOURCE >= 200112L

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

DESCRIPTION

 The truncate() and ftruncate() functions cause the regular file named by path or refer?

 enced by fd to be truncated to a size of precisely length bytes.

 If the file previously was larger than this size, the extra data is lost. If the file

 previously was shorter, it is extended, and the extended part reads as null bytes ('\0').

 The file offset is not changed. Page 1/4

 If the size changed, then the st_ctime and st_mtime fields (respectively, time of last

 status change and time of last modification; see inode(7)) for the file are updated, and

 the set-user-ID and set-group-ID mode bits may be cleared.

 With ftruncate(), the file must be open for writing; with truncate(), the file must be

 writable.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 For truncate():

 EACCES Search permission is denied for a component of the path prefix, or the named file

 is not writable by the user. (See also path_resolution(7).)

 EFAULT The argument path points outside the process's allocated address space.

 EFBIG The argument length is larger than the maximum file size. (XSI)

 EINTR While blocked waiting to complete, the call was interrupted by a signal handler;

 see fcntl(2) and signal(7).

 EINVAL The argument length is negative or larger than the maximum file size.

 EIO An I/O error occurred updating the inode.

 EISDIR The named file is a directory.

 ELOOP Too many symbolic links were encountered in translating the pathname.

 ENAMETOOLONG

 A component of a pathname exceeded 255 characters, or an entire pathname exceeded

 1023 characters.

 ENOENT The named file does not exist.

 ENOTDIR

 A component of the path prefix is not a directory.

 EPERM The underlying filesystem does not support extending a file beyond its current

 size.

 EPERM The operation was prevented by a file seal; see fcntl(2).

 EROFS The named file resides on a read-only filesystem.

 ETXTBSY

 The file is an executable file that is being executed.

 For ftruncate() the same errors apply, but instead of things that can be wrong with path,

 we now have things that can be wrong with the file descriptor, fd: Page 2/4

 EBADF fd is not a valid file descriptor.

 EBADF or EINVAL

 fd is not open for writing.

 EINVAL fd does not reference a regular file or a POSIX shared memory object.

 EINVAL or EBADF

 The file descriptor fd is not open for writing. POSIX permits, and portable appli?

 cations should handle, either error for this case. (Linux produces EINVAL.)

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.4BSD, SVr4 (these calls first appeared in 4.2BSD).

NOTES

 ftruncate() can also be used to set the size of a POSIX shared memory object; see

 shm_open(3).

 The details in DESCRIPTION are for XSI-compliant systems. For non-XSI-compliant systems,

 the POSIX standard allows two behaviors for ftruncate() when length exceeds the file

 length (note that truncate() is not specified at all in such an environment): either re?

 turning an error, or extending the file. Like most UNIX implementations, Linux follows

 the XSI requirement when dealing with native filesystems. However, some nonnative

 filesystems do not permit truncate() and ftruncate() to be used to extend a file beyond

 its current length: a notable example on Linux is VFAT.

 The original Linux truncate() and ftruncate() system calls were not designed to handle

 large file offsets. Consequently, Linux 2.4 added truncate64() and ftruncate64() system

 calls that handle large files. However, these details can be ignored by applications us?

 ing glibc, whose wrapper functions transparently employ the more recent system calls where

 they are available.

 On some 32-bit architectures, the calling signature for these system calls differ, for the

 reasons described in syscall(2).

BUGS

 A header file bug in glibc 2.12 meant that the minimum value of _POSIX_C_SOURCE required

 to expose the declaration of ftruncate() was 200809L instead of 200112L. This has been

 fixed in later glibc versions.

SEE ALSO

 truncate(1), open(2), stat(2), path_resolution(7)

COLOPHON Page 3/4

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 TRUNCATE(2)

Page 4/4

