
Rocky Enterprise Linux 9.2 Manual Pages on command 'fts_set.3'

$ man fts_set.3

FTS(3) Linux Programmer's Manual FTS(3)

NAME

 fts, fts_open, fts_read, fts_children, fts_set, fts_close - traverse a file hierarchy

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fts.h>

 FTS *fts_open(char * const *path_argv, int options,

 int (*compar)(const FTSENT **, const FTSENT **));

 FTSENT *fts_read(FTS *ftsp);

 FTSENT *fts_children(FTS *ftsp, int instr);

 int fts_set(FTS *ftsp, FTSENT *f, int instr);

 int fts_close(FTS *ftsp);

DESCRIPTION

 The fts functions are provided for traversing file hierarchies. A simple overview is that

 the fts_open() function returns a "handle" (of type FTS *) that refers to a file hierarchy

 "stream". This handle is then supplied to the other fts functions. The function

 fts_read() returns a pointer to a structure describing one of the files in the file hier?

 archy. The function fts_children() returns a pointer to a linked list of structures, each

 of which describes one of the files contained in a directory in the hierarchy.

 In general, directories are visited two distinguishable times; in preorder (before any of

 their descendants are visited) and in postorder (after all of their descendants have been

 visited). Files are visited once. It is possible to walk the hierarchy "logically" (vis? Page 1/10

 iting the files that symbolic links point to) or physically (visiting the symbolic links

 themselves), order the walk of the hierarchy or prune and/or revisit portions of the hier?

 archy.

 Two structures (and associated types) are defined in the include file <fts.h>. The first

 type is FTS, the structure that represents the file hierarchy itself. The second type is

 FTSENT, the structure that represents a file in the file hierarchy. Normally, an FTSENT

 structure is returned for every file in the file hierarchy. In this manual page, "file"

 and "FTSENT structure" are generally interchangeable.

 The FTSENT structure contains fields describing a file. The structure contains at least

 the following fields (there are additional fields that should be considered private to the

 implementation):

 typedef struct _ftsent {

 unsigned short fts_info; /* flags for FTSENT structure */

 char *fts_accpath; /* access path */

 char *fts_path; /* root path */

 short fts_pathlen; /* strlen(fts_path) +

 strlen(fts_name) */

 char *fts_name; /* filename */

 short fts_namelen; /* strlen(fts_name) */

 short fts_level; /* depth (-1 to N) */

 int fts_errno; /* file errno */

 long fts_number; /* local numeric value */

 void *fts_pointer; /* local address value */

 struct _ftsent *fts_parent; /* parent directory */

 struct _ftsent *fts_link; /* next file structure */

 struct _ftsent *fts_cycle; /* cycle structure */

 struct stat *fts_statp; /* stat(2) information */

 } FTSENT;

 These fields are defined as follows:

 fts_info

 One of the following values describing the returned FTSENT structure and the file

 it represents. With the exception of directories without errors (FTS_D), all of

 these entries are terminal, that is, they will not be revisited, nor will any of Page 2/10

 their descendants be visited.

 FTS_D A directory being visited in preorder.

 FTS_DC A directory that causes a cycle in the tree. (The fts_cycle field of the

 FTSENT structure will be filled in as well.)

 FTS_DEFAULT

 Any FTSENT structure that represents a file type not explicitly described by

 one of the other fts_info values.

 FTS_DNR

 A directory which cannot be read. This is an error return, and the fts_er?

 rno field will be set to indicate what caused the error.

 FTS_DOT

 A file named "." or ".." which was not specified as a filename to

 fts_open() (see FTS_SEEDOT).

 FTS_DP A directory being visited in postorder. The contents of the FTSENT struc?

 ture will be unchanged from when it was returned in preorder, that is, with

 the fts_info field set to FTS_D.

 FTS_ERR

 This is an error return, and the fts_errno field will be set to indicate

 what caused the error.

 FTS_F A regular file.

 FTS_NS A file for which no stat(2) information was available. The contents of the

 fts_statp field are undefined. This is an error return, and the fts_errno

 field will be set to indicate what caused the error.

 FTS_NSOK

 A file for which no stat(2) information was requested. The contents of the

 fts_statp field are undefined.

 FTS_SL A symbolic link.

 FTS_SLNONE

 A symbolic link with a nonexistent target. The contents of the fts_statp

 field reference the file characteristic information for the symbolic link

 itself.

 fts_accpath

 A path for accessing the file from the current directory. Page 3/10

 fts_path

 The path for the file relative to the root of the traversal. This path contains

 the path specified to fts_open() as a prefix.

 fts_pathlen

 The sum of the lengths of the strings referenced by fts_path and fts_name.

 fts_name

 The name of the file.

 fts_namelen

 The length of the string referenced by fts_name.

 fts_level

 The depth of the traversal, numbered from -1 to N, where this file was found. The

 FTSENT structure representing the parent of the starting point (or root) of the

 traversal is numbered -1, and the FTSENT structure for the root itself is numbered

 0.

 fts_errno

 If fts_children() or fts_read() returns an FTSENT structure whose fts_info field is

 set to FTS_DNR, FTS_ERR, or FTS_NS, the fts_errno field contains the error number

 (i.e., the errno value) specifying the cause of the error. Otherwise, the contents

 of the fts_errno field are undefined.

 fts_number

 This field is provided for the use of the application program and is not modified

 by the fts functions. It is initialized to 0.

 fts_pointer

 This field is provided for the use of the application program and is not modified

 by the fts functions. It is initialized to NULL.

 fts_parent

 A pointer to the FTSENT structure referencing the file in the hierarchy immediately

 above the current file, that is, the directory of which this file is a member. A

 parent structure for the initial entry point is provided as well, however, only the

 fts_level, fts_number, and fts_pointer fields are guaranteed to be initialized.

 fts_link

 Upon return from the fts_children() function, the fts_link field points to the next

 structure in the NULL-terminated linked list of directory members. Otherwise, the Page 4/10

 contents of the fts_link field are undefined.

 fts_cycle

 If a directory causes a cycle in the hierarchy (see FTS_DC), either because of a

 hard link between two directories, or a symbolic link pointing to a directory, the

 fts_cycle field of the structure will point to the FTSENT structure in the hierar?

 chy that references the same file as the current FTSENT structure. Otherwise, the

 contents of the fts_cycle field are undefined.

 fts_statp

 A pointer to stat(2) information for the file.

 A single buffer is used for all of the paths of all of the files in the file hierarchy.

 Therefore, the fts_path and fts_accpath fields are guaranteed to be null-terminated only

 for the file most recently returned by fts_read(). To use these fields to reference any

 files represented by other FTSENT structures will require that the path buffer be modified

 using the information contained in that FTSENT structure's fts_pathlen field. Any such

 modifications should be undone before further calls to fts_read() are attempted. The

 fts_name field is always null-terminated.

 fts_open()

 The fts_open() function takes a pointer to an array of character pointers naming one or

 more paths which make up a logical file hierarchy to be traversed. The array must be ter?

 minated by a null pointer.

 There are a number of options, at least one of which (either FTS_LOGICAL or FTS_PHYSICAL)

 must be specified. The options are selected by ORing the following values:

 FTS_COMFOLLOW

 This option causes any symbolic link specified as a root path to be followed imme?

 diately whether or not FTS_LOGICAL is also specified.

 FTS_LOGICAL

 This option causes the fts routines to return FTSENT structures for the targets of

 symbolic links instead of the symbolic links themselves. If this option is set,

 the only symbolic links for which FTSENT structures are returned to the application

 are those referencing nonexistent files. Either FTS_LOGICAL or FTS_PHYSICAL must

 be provided to the fts_open() function.

 FTS_NOCHDIR

 As a performance optimization, the fts functions change directories as they walk Page 5/10

 the file hierarchy. This has the side-effect that an application cannot rely on

 being in any particular directory during the traversal. The FTS_NOCHDIR option

 turns off this optimization, and the fts functions will not change the current di?

 rectory. Note that applications should not themselves change their current direc?

 tory and try to access files unless FTS_NOCHDIR is specified and absolute pathnames

 were provided as arguments to fts_open().

 FTS_NOSTAT

 By default, returned FTSENT structures reference file characteristic information

 (the statp field) for each file visited. This option relaxes that requirement as a

 performance optimization, allowing the fts functions to set the fts_info field to

 FTS_NSOK and leave the contents of the statp field undefined.

 FTS_PHYSICAL

 This option causes the fts routines to return FTSENT structures for symbolic links

 themselves instead of the target files they point to. If this option is set, FT?

 SENT structures for all symbolic links in the hierarchy are returned to the appli?

 cation. Either FTS_LOGICAL or FTS_PHYSICAL must be provided to the fts_open()

 function.

 FTS_SEEDOT

 By default, unless they are specified as path arguments to fts_open(), any files

 named "." or ".." encountered in the file hierarchy are ignored. This option

 causes the fts routines to return FTSENT structures for them.

 FTS_XDEV

 This option prevents fts from descending into directories that have a different de?

 vice number than the file from which the descent began.

 The argument compar() specifies a user-defined function which may be used to order the

 traversal of the hierarchy. It takes two pointers to pointers to FTSENT structures as ar?

 guments and should return a negative value, zero, or a positive value to indicate if the

 file referenced by its first argument comes before, in any order with respect to, or af?

 ter, the file referenced by its second argument. The fts_accpath, fts_path, and

 fts_pathlen fields of the FTSENT structures may never be used in this comparison. If the

 fts_info field is set to FTS_NS or FTS_NSOK, the fts_statp field may not either. If the

 compar() argument is NULL, the directory traversal order is in the order listed in

 path_argv for the root paths, and in the order listed in the directory for everything Page 6/10

 else.

 fts_read()

 The fts_read() function returns a pointer to an FTSENT structure describing a file in the

 hierarchy. Directories (that are readable and do not cause cycles) are visited at least

 twice, once in preorder and once in postorder. All other files are visited at least once.

 (Hard links between directories that do not cause cycles or symbolic links to symbolic

 links may cause files to be visited more than once, or directories more than twice.)

 If all the members of the hierarchy have been returned, fts_read() returns NULL and sets

 the external variable errno to 0. If an error unrelated to a file in the hierarchy oc?

 curs, fts_read() returns NULL and sets errno appropriately. If an error related to a re?

 turned file occurs, a pointer to an FTSENT structure is returned, and errno may or may not

 have been set (see fts_info).

 The FTSENT structures returned by fts_read() may be overwritten after a call to

 fts_close() on the same file hierarchy stream, or, after a call to fts_read() on the same

 file hierarchy stream unless they represent a file of type directory, in which case they

 will not be overwritten until after a call to fts_read() after the FTSENT structure has

 been returned by the function fts_read() in postorder.

 fts_children()

 The fts_children() function returns a pointer to an FTSENT structure describing the first

 entry in a NULL-terminated linked list of the files in the directory represented by the

 FTSENT structure most recently returned by fts_read(). The list is linked through the

 fts_link field of the FTSENT structure, and is ordered by the user-specified comparison

 function, if any. Repeated calls to fts_children() will re-create this linked list.

 As a special case, if fts_read() has not yet been called for a hierarchy, fts_children()

 will return a pointer to the files in the logical directory specified to fts_open(), that

 is, the arguments specified to fts_open(). Otherwise, if the FTSENT structure most re?

 cently returned by fts_read() is not a directory being visited in preorder, or the direc?

 tory does not contain any files, fts_children() returns NULL and sets errno to zero. If

 an error occurs, fts_children() returns NULL and sets errno appropriately.

 The FTSENT structures returned by fts_children() may be overwritten after a call to

 fts_children(), fts_close(), or fts_read() on the same file hierarchy stream.

 The instr argument is either zero or the following value:

 FTS_NAMEONLY Page 7/10

 Only the names of the files are needed. The contents of all the fields in the re?

 turned linked list of structures are undefined with the exception of the fts_name

 and fts_namelen fields.

 fts_set()

 The function fts_set() allows the user application to determine further processing for the

 file f of the stream ftsp. The fts_set() function returns 0 on success, and -1 if an er?

 ror occurs.

 The instr argument is either 0 (meaning "do nothing") or one of the following values:

 FTS_AGAIN

 Revisit the file; any file type may be revisited. The next call to fts_read() will

 return the referenced file. The fts_stat and fts_info fields of the structure will

 be reinitialized at that time, but no other fields will have been changed. This

 option is meaningful only for the most recently returned file from fts_read().

 Normal use is for postorder directory visits, where it causes the directory to be

 revisited (in both preorder and postorder) as well as all of its descendants.

 FTS_FOLLOW

 The referenced file must be a symbolic link. If the referenced file is the one

 most recently returned by fts_read(), the next call to fts_read() returns the file

 with the fts_info and fts_statp fields reinitialized to reflect the target of the

 symbolic link instead of the symbolic link itself. If the file is one of those

 most recently returned by fts_children(), the fts_info and fts_statp fields of the

 structure, when returned by fts_read(), will reflect the target of the symbolic

 link instead of the symbolic link itself. In either case, if the target of the

 symbolic link does not exist, the fields of the returned structure will be un?

 changed and the fts_info field will be set to FTS_SLNONE.

 If the target of the link is a directory, the preorder return, followed by the re?

 turn of all of its descendants, followed by a postorder return, is done.

 FTS_SKIP

 No descendants of this file are visited. The file may be one of those most re?

 cently returned by either fts_children() or fts_read().

 fts_close()

 The fts_close() function closes the file hierarchy stream referred to by ftsp and restores

 the current directory to the directory from which fts_open() was called to open ftsp. The Page 8/10

 fts_close() function returns 0 on success, and -1 if an error occurs.

ERRORS

 The function fts_open() may fail and set errno for any of the errors specified for open(2)

 and malloc(3).

 The function fts_close() may fail and set errno for any of the errors specified for

 chdir(2) and close(2).

 The functions fts_read() and fts_children() may fail and set errno for any of the errors

 specified for chdir(2), malloc(3), opendir(3), readdir(3), and stat(2).

 In addition, fts_children(), fts_open(), and fts_set() may fail and set errno as follows:

 EINVAL options or instr was invalid.

VERSIONS

 These functions are available in Linux since glibc2.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?fts_open(), fts_set(), fts_close() ? Thread safety ? MT-Safe ?

 ???

 ?fts_read(), fts_children() ? Thread safety ? MT-Unsafe ?

 ???

CONFORMING TO

 4.4BSD.

BUGS

 In versions of glibc before 2.23, all of the APIs described in this man page are not safe

 when compiling a program using the LFS APIs (e.g., when compiling with -D_FILE_OFF?

 SET_BITS=64).

SEE ALSO

 find(1), chdir(2), stat(2), ftw(3), qsort(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/. Page 9/10

Linux 2020-04-11 FTS(3)

Page 10/10

