
Rocky Enterprise Linux 9.2 Manual Pages on command 'futex.2'

$ man futex.2

FUTEX(2) Linux Programmer's Manual FUTEX(2)

NAME

 futex - fast user-space locking

SYNOPSIS

 #include <linux/futex.h>

 #include <stdint.h>

 #include <sys/time.h>

 long futex(uint32_t *uaddr, int futex_op, uint32_t val,

 const struct timespec *timeout, /* or: uint32_t val2 */

 uint32_t *uaddr2, uint32_t val3);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 The futex() system call provides a method for waiting until a certain condition becomes

 true. It is typically used as a blocking construct in the context of shared-memory syn?

 chronization. When using futexes, the majority of the synchronization operations are per?

 formed in user space. A user-space program employs the futex() system call only when it

 is likely that the program has to block for a longer time until the condition becomes

 true. Other futex() operations can be used to wake any processes or threads waiting for a

 particular condition.

 A futex is a 32-bit value?referred to below as a futex word?whose address is supplied to

 the futex() system call. (Futexes are 32 bits in size on all platforms, including 64-bit

 systems.) All futex operations are governed by this value. In order to share a futex be?

 tween processes, the futex is placed in a region of shared memory, created using (for ex? Page 1/22

 ample) mmap(2) or shmat(2). (Thus, the futex word may have different virtual addresses in

 different processes, but these addresses all refer to the same location in physical mem?

 ory.) In a multithreaded program, it is sufficient to place the futex word in a global

 variable shared by all threads.

 When executing a futex operation that requests to block a thread, the kernel will block

 only if the futex word has the value that the calling thread supplied (as one of the argu?

 ments of the futex() call) as the expected value of the futex word. The loading of the

 futex word's value, the comparison of that value with the expected value, and the actual

 blocking will happen atomically and will be totally ordered with respect to concurrent op?

 erations performed by other threads on the same futex word. Thus, the futex word is used

 to connect the synchronization in user space with the implementation of blocking by the

 kernel. Analogously to an atomic compare-and-exchange operation that potentially changes

 shared memory, blocking via a futex is an atomic compare-and-block operation.

 One use of futexes is for implementing locks. The state of the lock (i.e., acquired or

 not acquired) can be represented as an atomically accessed flag in shared memory. In the

 uncontended case, a thread can access or modify the lock state with atomic instructions,

 for example atomically changing it from not acquired to acquired using an atomic compare-

 and-exchange instruction. (Such instructions are performed entirely in user mode, and the

 kernel maintains no information about the lock state.) On the other hand, a thread may be

 unable to acquire a lock because it is already acquired by another thread. It then may

 pass the lock's flag as a futex word and the value representing the acquired state as the

 expected value to a futex() wait operation. This futex() operation will block if and only

 if the lock is still acquired (i.e., the value in the futex word still matches the "ac?

 quired state"). When releasing the lock, a thread has to first reset the lock state to

 not acquired and then execute a futex operation that wakes threads blocked on the lock

 flag used as a futex word (this can be further optimized to avoid unnecessary wake-ups).

 See futex(7) for more detail on how to use futexes.

 Besides the basic wait and wake-up futex functionality, there are further futex operations

 aimed at supporting more complex use cases.

 Note that no explicit initialization or destruction is necessary to use futexes; the ker?

 nel maintains a futex (i.e., the kernel-internal implementation artifact) only while oper?

 ations such as FUTEX_WAIT, described below, are being performed on a particular futex

 word. Page 2/22

 Arguments

 The uaddr argument points to the futex word. On all platforms, futexes are four-byte in?

 tegers that must be aligned on a four-byte boundary. The operation to perform on the fu?

 tex is specified in the futex_op argument; val is a value whose meaning and purpose de?

 pends on futex_op.

 The remaining arguments (timeout, uaddr2, and val3) are required only for certain of the

 futex operations described below. Where one of these arguments is not required, it is ig?

 nored.

 For several blocking operations, the timeout argument is a pointer to a timespec structure

 that specifies a timeout for the operation. However, notwithstanding the prototype shown

 above, for some operations, the least significant four bytes of this argument are instead

 used as an integer whose meaning is determined by the operation. For these operations,

 the kernel casts the timeout value first to unsigned long, then to uint32_t, and in the

 remainder of this page, this argument is referred to as val2 when interpreted in this

 fashion.

 Where it is required, the uaddr2 argument is a pointer to a second futex word that is em?

 ployed by the operation.

 The interpretation of the final integer argument, val3, depends on the operation.

 Futex operations

 The futex_op argument consists of two parts: a command that specifies the operation to be

 performed, bitwise ORed with zero or more options that modify the behaviour of the opera?

 tion. The options that may be included in futex_op are as follows:

 FUTEX_PRIVATE_FLAG (since Linux 2.6.22)

 This option bit can be employed with all futex operations. It tells the kernel

 that the futex is process-private and not shared with another process (i.e., it is

 being used for synchronization only between threads of the same process). This al?

 lows the kernel to make some additional performance optimizations.

 As a convenience, <linux/futex.h> defines a set of constants with the suffix _PRI?

 VATE that are equivalents of all of the operations listed below, but with the FU?

 TEX_PRIVATE_FLAG ORed into the constant value. Thus, there are FUTEX_WAIT_PRIVATE,

 FUTEX_WAKE_PRIVATE, and so on.

 FUTEX_CLOCK_REALTIME (since Linux 2.6.28)

 This option bit can be employed only with the FUTEX_WAIT_BITSET, FUTEX_WAIT_RE? Page 3/22

 QUEUE_PI, and (since Linux 4.5) FUTEX_WAIT operations.

 If this option is set, the kernel measures the timeout against the CLOCK_REALTIME

 clock.

 If this option is not set, the kernel measures the timeout against the CLOCK_MONO?

 TONIC clock.

 The operation specified in futex_op is one of the following:

 FUTEX_WAIT (since Linux 2.6.0)

 This operation tests that the value at the futex word pointed to by the address

 uaddr still contains the expected value val, and if so, then sleeps waiting for a

 FUTEX_WAKE operation on the futex word. The load of the value of the futex word is

 an atomic memory access (i.e., using atomic machine instructions of the respective

 architecture). This load, the comparison with the expected value, and starting to

 sleep are performed atomically and totally ordered with respect to other futex op?

 erations on the same futex word. If the thread starts to sleep, it is considered a

 waiter on this futex word. If the futex value does not match val, then the call

 fails immediately with the error EAGAIN.

 The purpose of the comparison with the expected value is to prevent lost wake-ups.

 If another thread changed the value of the futex word after the calling thread de?

 cided to block based on the prior value, and if the other thread executed a FU?

 TEX_WAKE operation (or similar wake-up) after the value change and before this FU?

 TEX_WAIT operation, then the calling thread will observe the value change and will

 not start to sleep.

 If the timeout is not NULL, the structure it points to specifies a timeout for the

 wait. (This interval will be rounded up to the system clock granularity, and is

 guaranteed not to expire early.) The timeout is by default measured according to

 the CLOCK_MONOTONIC clock, but, since Linux 4.5, the CLOCK_REALTIME clock can be

 selected by specifying FUTEX_CLOCK_REALTIME in futex_op. If timeout is NULL, the

 call blocks indefinitely.

 Note: for FUTEX_WAIT, timeout is interpreted as a relative value. This differs

 from other futex operations, where timeout is interpreted as an absolute value. To

 obtain the equivalent of FUTEX_WAIT with an absolute timeout, employ FU?

 TEX_WAIT_BITSET with val3 specified as FUTEX_BITSET_MATCH_ANY.

 The arguments uaddr2 and val3 are ignored. Page 4/22

 FUTEX_WAKE (since Linux 2.6.0)

 This operation wakes at most val of the waiters that are waiting (e.g., inside FU?

 TEX_WAIT) on the futex word at the address uaddr. Most commonly, val is specified

 as either 1 (wake up a single waiter) or INT_MAX (wake up all waiters). No guaran?

 tee is provided about which waiters are awoken (e.g., a waiter with a higher sched?

 uling priority is not guaranteed to be awoken in preference to a waiter with a

 lower priority).

 The arguments timeout, uaddr2, and val3 are ignored.

 FUTEX_FD (from Linux 2.6.0 up to and including Linux 2.6.25)

 This operation creates a file descriptor that is associated with the futex at

 uaddr. The caller must close the returned file descriptor after use. When another

 process or thread performs a FUTEX_WAKE on the futex word, the file descriptor in?

 dicates as being readable with select(2), poll(2), and epoll(7)

 The file descriptor can be used to obtain asynchronous notifications: if val is

 nonzero, then, when another process or thread executes a FUTEX_WAKE, the caller

 will receive the signal number that was passed in val.

 The arguments timeout, uaddr2, and val3 are ignored.

 Because it was inherently racy, FUTEX_FD has been removed from Linux 2.6.26 onward.

 FUTEX_REQUEUE (since Linux 2.6.0)

 This operation performs the same task as FUTEX_CMP_REQUEUE (see below), except that

 no check is made using the value in val3. (The argument val3 is ignored.)

 FUTEX_CMP_REQUEUE (since Linux 2.6.7)

 This operation first checks whether the location uaddr still contains the value

 val3. If not, the operation fails with the error EAGAIN. Otherwise, the operation

 wakes up a maximum of val waiters that are waiting on the futex at uaddr. If there

 are more than val waiters, then the remaining waiters are removed from the wait

 queue of the source futex at uaddr and added to the wait queue of the target futex

 at uaddr2. The val2 argument specifies an upper limit on the number of waiters

 that are requeued to the futex at uaddr2.

 The load from uaddr is an atomic memory access (i.e., using atomic machine instruc?

 tions of the respective architecture). This load, the comparison with val3, and

 the requeueing of any waiters are performed atomically and totally ordered with re?

 spect to other operations on the same futex word. Page 5/22

 Typical values to specify for val are 0 or 1. (Specifying INT_MAX is not useful,

 because it would make the FUTEX_CMP_REQUEUE operation equivalent to FUTEX_WAKE.)

 The limit value specified via val2 is typically either 1 or INT_MAX. (Specifying

 the argument as 0 is not useful, because it would make the FUTEX_CMP_REQUEUE opera?

 tion equivalent to FUTEX_WAIT.)

 The FUTEX_CMP_REQUEUE operation was added as a replacement for the earlier FU?

 TEX_REQUEUE. The difference is that the check of the value at uaddr can be used to

 ensure that requeueing happens only under certain conditions, which allows race

 conditions to be avoided in certain use cases.

 Both FUTEX_REQUEUE and FUTEX_CMP_REQUEUE can be used to avoid "thundering herd"

 wake-ups that could occur when using FUTEX_WAKE in cases where all of the waiters

 that are woken need to acquire another futex. Consider the following scenario,

 where multiple waiter threads are waiting on B, a wait queue implemented using a

 futex:

 lock(A)

 while (!check_value(V)) {

 unlock(A);

 block_on(B);

 lock(A);

 };

 unlock(A);

 If a waker thread used FUTEX_WAKE, then all waiters waiting on B would be woken up,

 and they would all try to acquire lock A. However, waking all of the threads in

 this manner would be pointless because all except one of the threads would immedi?

 ately block on lock A again. By contrast, a requeue operation wakes just one

 waiter and moves the other waiters to lock A, and when the woken waiter unlocks A

 then the next waiter can proceed.

 FUTEX_WAKE_OP (since Linux 2.6.14)

 This operation was added to support some user-space use cases where more than one

 futex must be handled at the same time. The most notable example is the implemen?

 tation of pthread_cond_signal(3), which requires operations on two futexes, the one

 used to implement the mutex and the one used in the implementation of the wait

 queue associated with the condition variable. FUTEX_WAKE_OP allows such cases to Page 6/22

 be implemented without leading to high rates of contention and context switching.

 The FUTEX_WAKE_OP operation is equivalent to executing the following code atomi?

 cally and totally ordered with respect to other futex operations on any of the two

 supplied futex words:

 uint32_t oldval = *(uint32_t *) uaddr2;

 *(uint32_t *) uaddr2 = oldval op oparg;

 futex(uaddr, FUTEX_WAKE, val, 0, 0, 0);

 if (oldval cmp cmparg)

 futex(uaddr2, FUTEX_WAKE, val2, 0, 0, 0);

 In other words, FUTEX_WAKE_OP does the following:

 * saves the original value of the futex word at uaddr2 and performs an operation

 to modify the value of the futex at uaddr2; this is an atomic read-modify-write

 memory access (i.e., using atomic machine instructions of the respective archi?

 tecture)

 * wakes up a maximum of val waiters on the futex for the futex word at uaddr; and

 * dependent on the results of a test of the original value of the futex word at

 uaddr2, wakes up a maximum of val2 waiters on the futex for the futex word at

 uaddr2.

 The operation and comparison that are to be performed are encoded in the bits of

 the argument val3. Pictorially, the encoding is:

 +---+---+-----------+-----------+

 |op |cmp| oparg | cmparg |

 +---+---+-----------+-----------+

 4 4 12 12 <== # of bits

 Expressed in code, the encoding is:

 #define FUTEX_OP(op, oparg, cmp, cmparg) \

 (((op & 0xf) << 28) | \

 ((cmp & 0xf) << 24) | \

 ((oparg & 0xfff) << 12) | \

 (cmparg & 0xfff))

 In the above, op and cmp are each one of the codes listed below. The oparg and cm?

 parg components are literal numeric values, except as noted below.

 The op component has one of the following values: Page 7/22

 FUTEX_OP_SET 0 /* uaddr2 = oparg; */

 FUTEX_OP_ADD 1 /* uaddr2 += oparg; */

 FUTEX_OP_OR 2 /* uaddr2 |= oparg; */

 FUTEX_OP_ANDN 3 /* uaddr2 &= ~oparg; */

 FUTEX_OP_XOR 4 /* uaddr2 ^= oparg; */

 In addition, bitwise ORing the following value into op causes (1 << oparg) to be

 used as the operand:

 FUTEX_OP_ARG_SHIFT 8 /* Use (1 << oparg) as operand */

 The cmp field is one of the following:

 FUTEX_OP_CMP_EQ 0 /* if (oldval == cmparg) wake */

 FUTEX_OP_CMP_NE 1 /* if (oldval != cmparg) wake */

 FUTEX_OP_CMP_LT 2 /* if (oldval < cmparg) wake */

 FUTEX_OP_CMP_LE 3 /* if (oldval <= cmparg) wake */

 FUTEX_OP_CMP_GT 4 /* if (oldval > cmparg) wake */

 FUTEX_OP_CMP_GE 5 /* if (oldval >= cmparg) wake */

 The return value of FUTEX_WAKE_OP is the sum of the number of waiters woken on the

 futex uaddr plus the number of waiters woken on the futex uaddr2.

 FUTEX_WAIT_BITSET (since Linux 2.6.25)

 This operation is like FUTEX_WAIT except that val3 is used to provide a 32-bit bit

 mask to the kernel. This bit mask, in which at least one bit must be set, is

 stored in the kernel-internal state of the waiter. See the description of FU?

 TEX_WAKE_BITSET for further details.

 If timeout is not NULL, the structure it points to specifies an absolute timeout

 for the wait operation. If timeout is NULL, the operation can block indefinitely.

 The uaddr2 argument is ignored.

 FUTEX_WAKE_BITSET (since Linux 2.6.25)

 This operation is the same as FUTEX_WAKE except that the val3 argument is used to

 provide a 32-bit bit mask to the kernel. This bit mask, in which at least one bit

 must be set, is used to select which waiters should be woken up. The selection is

 done by a bitwise AND of the "wake" bit mask (i.e., the value in val3) and the bit

 mask which is stored in the kernel-internal state of the waiter (the "wait" bit

 mask that is set using FUTEX_WAIT_BITSET). All of the waiters for which the result

 of the AND is nonzero are woken up; the remaining waiters are left sleeping. Page 8/22

 The effect of FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET is to allow selective wake-

 ups among multiple waiters that are blocked on the same futex. However, note that,

 depending on the use case, employing this bit-mask multiplexing feature on a futex

 can be less efficient than simply using multiple futexes, because employing bit-

 mask multiplexing requires the kernel to check all waiters on a futex, including

 those that are not interested in being woken up (i.e., they do not have the rele?

 vant bit set in their "wait" bit mask).

 The constant FUTEX_BITSET_MATCH_ANY, which corresponds to all 32 bits set in the

 bit mask, can be used as the val3 argument for FUTEX_WAIT_BITSET and FU?

 TEX_WAKE_BITSET. Other than differences in the handling of the timeout argument,

 the FUTEX_WAIT operation is equivalent to FUTEX_WAIT_BITSET with val3 specified as

 FUTEX_BITSET_MATCH_ANY; that is, allow a wake-up by any waker. The FUTEX_WAKE op?

 eration is equivalent to FUTEX_WAKE_BITSET with val3 specified as FUTEX_BIT?

 SET_MATCH_ANY; that is, wake up any waiter(s).

 The uaddr2 and timeout arguments are ignored.

 Priority-inheritance futexes

 Linux supports priority-inheritance (PI) futexes in order to handle priority-inversion

 problems that can be encountered with normal futex locks. Priority inversion is the prob?

 lem that occurs when a high-priority task is blocked waiting to acquire a lock held by a

 low-priority task, while tasks at an intermediate priority continuously preempt the low-

 priority task from the CPU. Consequently, the low-priority task makes no progress toward

 releasing the lock, and the high-priority task remains blocked.

 Priority inheritance is a mechanism for dealing with the priority-inversion problem. With

 this mechanism, when a high-priority task becomes blocked by a lock held by a low-priority

 task, the priority of the low-priority task is temporarily raised to that of the high-pri?

 ority task, so that it is not preempted by any intermediate level tasks, and can thus make

 progress toward releasing the lock. To be effective, priority inheritance must be transi?

 tive, meaning that if a high-priority task blocks on a lock held by a lower-priority task

 that is itself blocked by a lock held by another intermediate-priority task (and so on,

 for chains of arbitrary length), then both of those tasks (or more generally, all of the

 tasks in a lock chain) have their priorities raised to be the same as the high-priority

 task.

 From a user-space perspective, what makes a futex PI-aware is a policy agreement (de? Page 9/22

 scribed below) between user space and the kernel about the value of the futex word, cou?

 pled with the use of the PI-futex operations described below. (Unlike the other futex op?

 erations described above, the PI-futex operations are designed for the implementation of

 very specific IPC mechanisms.)

 The PI-futex operations described below differ from the other futex operations in that

 they impose policy on the use of the value of the futex word:

 * If the lock is not acquired, the futex word's value shall be 0.

 * If the lock is acquired, the futex word's value shall be the thread ID (TID; see get?

 tid(2)) of the owning thread.

 * If the lock is owned and there are threads contending for the lock, then the FU?

 TEX_WAITERS bit shall be set in the futex word's value; in other words, this value is:

 FUTEX_WAITERS | TID

 (Note that is invalid for a PI futex word to have no owner and FUTEX_WAITERS set.)

 With this policy in place, a user-space application can acquire an unacquired lock or re?

 lease a lock using atomic instructions executed in user mode (e.g., a compare-and-swap op?

 eration such as cmpxchg on the x86 architecture). Acquiring a lock simply consists of us?

 ing compare-and-swap to atomically set the futex word's value to the caller's TID if its

 previous value was 0. Releasing a lock requires using compare-and-swap to set the futex

 word's value to 0 if the previous value was the expected TID.

 If a futex is already acquired (i.e., has a nonzero value), waiters must employ the FU?

 TEX_LOCK_PI operation to acquire the lock. If other threads are waiting for the lock,

 then the FUTEX_WAITERS bit is set in the futex value; in this case, the lock owner must

 employ the FUTEX_UNLOCK_PI operation to release the lock.

 In the cases where callers are forced into the kernel (i.e., required to perform a futex()

 call), they then deal directly with a so-called RT-mutex, a kernel locking mechanism which

 implements the required priority-inheritance semantics. After the RT-mutex is acquired,

 the futex value is updated accordingly, before the calling thread returns to user space.

 It is important to note that the kernel will update the futex word's value prior to re?

 turning to user space. (This prevents the possibility of the futex word's value ending up

 in an invalid state, such as having an owner but the value being 0, or having waiters but

 not having the FUTEX_WAITERS bit set.)

 If a futex has an associated RT-mutex in the kernel (i.e., there are blocked waiters) and

 the owner of the futex/RT-mutex dies unexpectedly, then the kernel cleans up the RT-mutex Page 10/22

 and hands it over to the next waiter. This in turn requires that the user-space value is

 updated accordingly. To indicate that this is required, the kernel sets the FU?

 TEX_OWNER_DIED bit in the futex word along with the thread ID of the new owner. User

 space can detect this situation via the presence of the FUTEX_OWNER_DIED bit and is then

 responsible for cleaning up the stale state left over by the dead owner.

 PI futexes are operated on by specifying one of the values listed below in futex_op. Note

 that the PI futex operations must be used as paired operations and are subject to some ad?

 ditional requirements:

 * FUTEX_LOCK_PI and FUTEX_TRYLOCK_PI pair with FUTEX_UNLOCK_PI. FUTEX_UNLOCK_PI must be

 called only on a futex owned by the calling thread, as defined by the value policy,

 otherwise the error EPERM results.

 * FUTEX_WAIT_REQUEUE_PI pairs with FUTEX_CMP_REQUEUE_PI. This must be performed from a

 non-PI futex to a distinct PI futex (or the error EINVAL results). Additionally, val

 (the number of waiters to be woken) must be 1 (or the error EINVAL results).

 The PI futex operations are as follows:

 FUTEX_LOCK_PI (since Linux 2.6.18)

 This operation is used after an attempt to acquire the lock via an atomic user-mode

 instruction failed because the futex word has a nonzero value?specifically, because

 it contained the (PID-namespace-specific) TID of the lock owner.

 The operation checks the value of the futex word at the address uaddr. If the

 value is 0, then the kernel tries to atomically set the futex value to the caller's

 TID. If the futex word's value is nonzero, the kernel atomically sets the FU?

 TEX_WAITERS bit, which signals the futex owner that it cannot unlock the futex in

 user space atomically by setting the futex value to 0. After that, the kernel:

 1. Tries to find the thread which is associated with the owner TID.

 2. Creates or reuses kernel state on behalf of the owner. (If this is the first

 waiter, there is no kernel state for this futex, so kernel state is created by

 locking the RT-mutex and the futex owner is made the owner of the RT-mutex. If

 there are existing waiters, then the existing state is reused.)

 3. Attaches the waiter to the futex (i.e., the waiter is enqueued on the RT-mutex

 waiter list).

 If more than one waiter exists, the enqueueing of the waiter is in descending pri?

 ority order. (For information on priority ordering, see the discussion of the Page 11/22

 SCHED_DEADLINE, SCHED_FIFO, and SCHED_RR scheduling policies in sched(7).) The

 owner inherits either the waiter's CPU bandwidth (if the waiter is scheduled under

 the SCHED_DEADLINE policy) or the waiter's priority (if the waiter is scheduled un?

 der the SCHED_RR or SCHED_FIFO policy). This inheritance follows the lock chain in

 the case of nested locking and performs deadlock detection.

 The timeout argument provides a timeout for the lock attempt. If timeout is not

 NULL, the structure it points to specifies an absolute timeout, measured against

 the CLOCK_REALTIME clock. If timeout is NULL, the operation will block indefi?

 nitely.

 The uaddr2, val, and val3 arguments are ignored.

 FUTEX_TRYLOCK_PI (since Linux 2.6.18)

 This operation tries to acquire the lock at uaddr. It is invoked when a user-space

 atomic acquire did not succeed because the futex word was not 0.

 Because the kernel has access to more state information than user space, acquisi?

 tion of the lock might succeed if performed by the kernel in cases where the futex

 word (i.e., the state information accessible to use-space) contains stale state

 (FUTEX_WAITERS and/or FUTEX_OWNER_DIED). This can happen when the owner of the fu?

 tex died. User space cannot handle this condition in a race-free manner, but the

 kernel can fix this up and acquire the futex.

 The uaddr2, val, timeout, and val3 arguments are ignored.

 FUTEX_UNLOCK_PI (since Linux 2.6.18)

 This operation wakes the top priority waiter that is waiting in FUTEX_LOCK_PI on

 the futex address provided by the uaddr argument.

 This is called when the user-space value at uaddr cannot be changed atomically from

 a TID (of the owner) to 0.

 The uaddr2, val, timeout, and val3 arguments are ignored.

 FUTEX_CMP_REQUEUE_PI (since Linux 2.6.31)

 This operation is a PI-aware variant of FUTEX_CMP_REQUEUE. It requeues waiters

 that are blocked via FUTEX_WAIT_REQUEUE_PI on uaddr from a non-PI source futex

 (uaddr) to a PI target futex (uaddr2).

 As with FUTEX_CMP_REQUEUE, this operation wakes up a maximum of val waiters that

 are waiting on the futex at uaddr. However, for FUTEX_CMP_REQUEUE_PI, val is re?

 quired to be 1 (since the main point is to avoid a thundering herd). The remaining Page 12/22

 waiters are removed from the wait queue of the source futex at uaddr and added to

 the wait queue of the target futex at uaddr2.

 The val2 and val3 arguments serve the same purposes as for FUTEX_CMP_REQUEUE.

 FUTEX_WAIT_REQUEUE_PI (since Linux 2.6.31)

 Wait on a non-PI futex at uaddr and potentially be requeued (via a FUTEX_CMP_RE?

 QUEUE_PI operation in another task) onto a PI futex at uaddr2. The wait operation

 on uaddr is the same as for FUTEX_WAIT.

 The waiter can be removed from the wait on uaddr without requeueing on uaddr2 via a

 FUTEX_WAKE operation in another task. In this case, the FUTEX_WAIT_REQUEUE_PI op?

 eration fails with the error EAGAIN.

 If timeout is not NULL, the structure it points to specifies an absolute timeout

 for the wait operation. If timeout is NULL, the operation can block indefinitely.

 The val3 argument is ignored.

 The FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI were added to support a fairly

 specific use case: support for priority-inheritance-aware POSIX threads condition

 variables. The idea is that these operations should always be paired, in order to

 ensure that user space and the kernel remain in sync. Thus, in the FUTEX_WAIT_RE?

 QUEUE_PI operation, the user-space application pre-specifies the target of the re?

 queue that takes place in the FUTEX_CMP_REQUEUE_PI operation.

RETURN VALUE

 In the event of an error (and assuming that futex() was invoked via syscall(2)), all oper?

 ations return -1 and set errno to indicate the cause of the error.

 The return value on success depends on the operation, as described in the following list:

 FUTEX_WAIT

 Returns 0 if the caller was woken up. Note that a wake-up can also be caused by

 common futex usage patterns in unrelated code that happened to have previously used

 the futex word's memory location (e.g., typical futex-based implementations of

 Pthreads mutexes can cause this under some conditions). Therefore, callers should

 always conservatively assume that a return value of 0 can mean a spurious wake-up,

 and use the futex word's value (i.e., the user-space synchronization scheme) to de?

 cide whether to continue to block or not.

 FUTEX_WAKE

 Returns the number of waiters that were woken up. Page 13/22

 FUTEX_FD

 Returns the new file descriptor associated with the futex.

 FUTEX_REQUEUE

 Returns the number of waiters that were woken up.

 FUTEX_CMP_REQUEUE

 Returns the total number of waiters that were woken up or requeued to the futex for

 the futex word at uaddr2. If this value is greater than val, then the difference

 is the number of waiters requeued to the futex for the futex word at uaddr2.

 FUTEX_WAKE_OP

 Returns the total number of waiters that were woken up. This is the sum of the wo?

 ken waiters on the two futexes for the futex words at uaddr and uaddr2.

 FUTEX_WAIT_BITSET

 Returns 0 if the caller was woken up. See FUTEX_WAIT for how to interpret this

 correctly in practice.

 FUTEX_WAKE_BITSET

 Returns the number of waiters that were woken up.

 FUTEX_LOCK_PI

 Returns 0 if the futex was successfully locked.

 FUTEX_TRYLOCK_PI

 Returns 0 if the futex was successfully locked.

 FUTEX_UNLOCK_PI

 Returns 0 if the futex was successfully unlocked.

 FUTEX_CMP_REQUEUE_PI

 Returns the total number of waiters that were woken up or requeued to the futex for

 the futex word at uaddr2. If this value is greater than val, then difference is

 the number of waiters requeued to the futex for the futex word at uaddr2.

 FUTEX_WAIT_REQUEUE_PI

 Returns 0 if the caller was successfully requeued to the futex for the futex word

 at uaddr2.

ERRORS

 EACCES No read access to the memory of a futex word.

 EAGAIN (FUTEX_WAIT, FUTEX_WAIT_BITSET, FUTEX_WAIT_REQUEUE_PI) The value pointed to by

 uaddr was not equal to the expected value val at the time of the call. Page 14/22

 Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both of which appear in

 different parts of the kernel futex code) have the same value.

 EAGAIN (FUTEX_CMP_REQUEUE, FUTEX_CMP_REQUEUE_PI) The value pointed to by uaddr is not

 equal to the expected value val3.

 EAGAIN (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The futex owner thread ID

 of uaddr (for FUTEX_CMP_REQUEUE_PI: uaddr2) is about to exit, but has not yet han?

 dled the internal state cleanup. Try again.

 EDEADLK

 (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The futex word at uaddr is

 already locked by the caller.

 EDEADLK

 (FUTEX_CMP_REQUEUE_PI) While requeueing a waiter to the PI futex for the futex word

 at uaddr2, the kernel detected a deadlock.

 EFAULT A required pointer argument (i.e., uaddr, uaddr2, or timeout) did not point to a

 valid user-space address.

 EINTR A FUTEX_WAIT or FUTEX_WAIT_BITSET operation was interrupted by a signal (see sig?

 nal(7)). In kernels before Linux 2.6.22, this error could also be returned for a

 spurious wakeup; since Linux 2.6.22, this no longer happens.

 EINVAL The operation in futex_op is one of those that employs a timeout, but the supplied

 timeout argument was invalid (tv_sec was less than zero, or tv_nsec was not less

 than 1,000,000,000).

 EINVAL The operation specified in futex_op employs one or both of the pointers uaddr and

 uaddr2, but one of these does not point to a valid object?that is, the address is

 not four-byte-aligned.

 EINVAL (FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET) The bit mask supplied in val3 is zero.

 EINVAL (FUTEX_CMP_REQUEUE_PI) uaddr equals uaddr2 (i.e., an attempt was made to requeue to

 the same futex).

 EINVAL (FUTEX_FD) The signal number supplied in val is invalid.

 EINVAL (FUTEX_WAKE, FUTEX_WAKE_OP, FUTEX_WAKE_BITSET, FUTEX_REQUEUE,

FUTEX_CMP_REQUEUE)

 The kernel detected an inconsistency between the user-space state at uaddr and the

 kernel state?that is, it detected a waiter which waits in FUTEX_LOCK_PI on uaddr.

 EINVAL (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_UNLOCK_PI) The kernel detected an inconsis?Page 15/22

 tency between the user-space state at uaddr and the kernel state. This indicates

 either state corruption or that the kernel found a waiter on uaddr which is waiting

 via FUTEX_WAIT or FUTEX_WAIT_BITSET.

 EINVAL (FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-space

 state at uaddr2 and the kernel state; that is, the kernel detected a waiter which

 waits via FUTEX_WAIT or FUTEX_WAIT_BITSET on uaddr2.

 EINVAL (FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-space

 state at uaddr and the kernel state; that is, the kernel detected a waiter which

 waits via FUTEX_WAIT or FUTEX_WAIT_BITESET on uaddr.

 EINVAL (FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-space

 state at uaddr and the kernel state; that is, the kernel detected a waiter which

 waits on uaddr via FUTEX_LOCK_PI (instead of FUTEX_WAIT_REQUEUE_PI).

 EINVAL (FUTEX_CMP_REQUEUE_PI) An attempt was made to requeue a waiter to a futex other

 than that specified by the matching FUTEX_WAIT_REQUEUE_PI call for that waiter.

 EINVAL (FUTEX_CMP_REQUEUE_PI) The val argument is not 1.

 EINVAL Invalid argument.

 ENFILE (FUTEX_FD) The system-wide limit on the total number of open files has been

 reached.

 ENOMEM (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The kernel could not allo?

 cate memory to hold state information.

 ENOSYS Invalid operation specified in futex_op.

 ENOSYS The FUTEX_CLOCK_REALTIME option was specified in futex_op, but the accompanying op?

 eration was neither FUTEX_WAIT, FUTEX_WAIT_BITSET, nor FUTEX_WAIT_REQUEUE_PI.

 ENOSYS (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_UNLOCK_PI, FUTEX_CMP_REQUEUE_PI, FU?

 TEX_WAIT_REQUEUE_PI) A run-time check determined that the operation is not avail?

 able. The PI-futex operations are not implemented on all architectures and are not

 supported on some CPU variants.

 EPERM (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The caller is not allowed

 to attach itself to the futex at uaddr (for FUTEX_CMP_REQUEUE_PI: the futex at

 uaddr2). (This may be caused by a state corruption in user space.)

 EPERM (FUTEX_UNLOCK_PI) The caller does not own the lock represented by the futex word.

 ESRCH (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The thread ID in the futex

 word at uaddr does not exist. Page 16/22

 ESRCH (FUTEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr2 does not exist.

 ETIMEDOUT

 The operation in futex_op employed the timeout specified in timeout, and the time?

 out expired before the operation completed.

VERSIONS

 Futexes were first made available in a stable kernel release with Linux 2.6.0.

 Initial futex support was merged in Linux 2.5.7 but with different semantics from what was

 described above. A four-argument system call with the semantics described in this page

 was introduced in Linux 2.5.40. A fifth argument was added in Linux 2.5.70, and a sixth

 argument was added in Linux 2.6.7.

CONFORMING TO

 This system call is Linux-specific.

NOTES

 Glibc does not provide a wrapper for this system call; call it using syscall(2).

 Several higher-level programming abstractions are implemented via futexes, including POSIX

 semaphores and various POSIX threads synchronization mechanisms (mutexes, condition vari?

 ables, read-write locks, and barriers).

EXAMPLES

 The program below demonstrates use of futexes in a program where a parent process and a

 child process use a pair of futexes located inside a shared anonymous mapping to synchro?

 nize access to a shared resource: the terminal. The two processes each write nloops (a

 command-line argument that defaults to 5 if omitted) messages to the terminal and employ a

 synchronization protocol that ensures that they alternate in writing messages. Upon run?

 ning this program we see output such as the following:

 $./futex_demo

 Parent (18534) 0

 Child (18535) 0

 Parent (18534) 1

 Child (18535) 1

 Parent (18534) 2

 Child (18535) 2

 Parent (18534) 3

 Child (18535) 3 Page 17/22

 Parent (18534) 4

 Child (18535) 4

 Program source

 /* futex_demo.c

 Usage: futex_demo [nloops]

 (Default: 5)

 Demonstrate the use of futexes in a program where parent and child

 use a pair of futexes located inside a shared anonymous mapping to

 synchronize access to a shared resource: the terminal. The two

 processes each write 'num-loops' messages to the terminal and employ

 a synchronization protocol that ensures that they alternate in

 writing messages.

 */

 #define _GNU_SOURCE

 #include <stdio.h>

 #include <errno.h>

 #include <stdatomic.h>

 #include <stdint.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <sys/wait.h>

 #include <sys/mman.h>

 #include <sys/syscall.h>

 #include <linux/futex.h>

 #include <sys/time.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static uint32_t *futex1, *futex2, *iaddr;

 static int

 futex(uint32_t *uaddr, int futex_op, uint32_t val,

 const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)

 {

 return syscall(SYS_futex, uaddr, futex_op, val, Page 18/22

 timeout, uaddr2, val3);

 }

 /* Acquire the futex pointed to by 'futexp': wait for its value to

 become 1, and then set the value to 0. */

 static void

 fwait(uint32_t *futexp)

 {

 long s;

 /* atomic_compare_exchange_strong(ptr, oldval, newval)

 atomically performs the equivalent of:

 if (*ptr == *oldval)

 *ptr = newval;

 It returns true if the test yielded true and *ptr was updated. */

 while (1) {

 /* Is the futex available? */

 const uint32_t one = 1;

 if (atomic_compare_exchange_strong(futexp, &one, 0))

 break; /* Yes */

 /* Futex is not available; wait */

 s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0);

 if (s == -1 && errno != EAGAIN)

 errExit("futex-FUTEX_WAIT");

 }

 }

 /* Release the futex pointed to by 'futexp': if the futex currently

 has the value 0, set its value to 1 and the wake any futex waiters,

 so that if the peer is blocked in fwait(), it can proceed. */

 static void

 fpost(uint32_t *futexp)

 {

 long s;

 /* atomic_compare_exchange_strong() was described

 in comments above */ Page 19/22

 const uint32_t zero = 0;

 if (atomic_compare_exchange_strong(futexp, &zero, 1)) {

 s = futex(futexp, FUTEX_WAKE, 1, NULL, NULL, 0);

 if (s == -1)

 errExit("futex-FUTEX_WAKE");

 }

 }

 int

 main(int argc, char *argv[])

 {

 pid_t childPid;

 int nloops;

 setbuf(stdout, NULL);

 nloops = (argc > 1) ? atoi(argv[1]) : 5;

 /* Create a shared anonymous mapping that will hold the futexes.

 Since the futexes are being shared between processes, we

 subsequently use the "shared" futex operations (i.e., not the

 ones suffixed "_PRIVATE") */

 iaddr = mmap(NULL, sizeof(*iaddr) * 2, PROT_READ | PROT_WRITE,

 MAP_ANONYMOUS | MAP_SHARED, -1, 0);

 if (iaddr == MAP_FAILED)

 errExit("mmap");

 futex1 = &iaddr[0];

 futex2 = &iaddr[1];

 futex1 = 0; / State: unavailable */

 futex2 = 1; / State: available */

 /* Create a child process that inherits the shared anonymous

 mapping */

 childPid = fork();

 if (childPid == -1)

 errExit("fork");

 if (childPid == 0) { /* Child */

 for (int j = 0; j < nloops; j++) { Page 20/22

 fwait(futex1);

 printf("Child (%jd) %d\n", (intmax_t) getpid(), j);

 fpost(futex2);

 }

 exit(EXIT_SUCCESS);

 }

 /* Parent falls through to here */

 for (int j = 0; j < nloops; j++) {

 fwait(futex2);

 printf("Parent (%jd) %d\n", (intmax_t) getpid(), j);

 fpost(futex1);

 }

 wait(NULL);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 get_robust_list(2), restart_syscall(2), pthread_mutexattr_getprotocol(3), futex(7),

 sched(7)

 The following kernel source files:

 * Documentation/pi-futex.txt

 * Documentation/futex-requeue-pi.txt

 * Documentation/locking/rt-mutex.txt

 * Documentation/locking/rt-mutex-design.txt

 * Documentation/robust-futex-ABI.txt

 Franke, H., Russell, R., and Kirwood, M., 2002. Fuss, Futexes and Furwocks: Fast User?

 level Locking in Linux (from proceedings of the Ottawa Linux Symposium 2002),

 ?http://kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf?

 Hart, D., 2009. A futex overview and update, ?http://lwn.net/Articles/360699/?

 Hart, D. and Guniguntala, D., 2009. Requeue-PI: Making Glibc Condvars PI-Aware (from pro?

 ceedings of the 2009 Real-Time Linux Workshop),

 ?http://lwn.net/images/conf/rtlws11/papers/proc/p10.pdf?

 Drepper, U., 2011. Futexes Are Tricky, ?http://www.akkadia.org/drepper/futex.pdf?

 Futex example library, futex-*.tar.bz2 at Page 21/22

 ?ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/?

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 FUTEX(2)

Page 22/22

