
Rocky Enterprise Linux 9.2 Manual Pages on command 'futex.7'

$ man futex.7

FUTEX(7) Linux Programmer's Manual FUTEX(7)

NAME

 futex - fast user-space locking

SYNOPSIS

 #include <linux/futex.h>

DESCRIPTION

 The Linux kernel provides futexes ("Fast user-space mutexes") as a building block for fast

 user-space locking and semaphores. Futexes are very basic and lend themselves well for

 building higher-level locking abstractions such as mutexes, condition variables, read-

 write locks, barriers, and semaphores.

 Most programmers will in fact not be using futexes directly but will instead rely on sys?

 tem libraries built on them, such as the Native POSIX Thread Library (NPTL) (see

 pthreads(7)).

 A futex is identified by a piece of memory which can be shared between processes or

 threads. In these different processes, the futex need not have identical addresses. In

 its bare form, a futex has semaphore semantics; it is a counter that can be incremented

 and decremented atomically; processes can wait for the value to become positive.

 Futex operation occurs entirely in user space for the noncontended case. The kernel is

 involved only to arbitrate the contended case. As any sane design will strive for noncon?

 tention, futexes are also optimized for this situation.

 In its bare form, a futex is an aligned integer which is touched only by atomic assembler

 instructions. This integer is four bytes long on all platforms. Processes can share this

 integer using mmap(2), via shared memory segments, or because they share memory space, in Page 1/3

 which case the application is commonly called multithreaded.

 Semantics

 Any futex operation starts in user space, but it may be necessary to communicate with the

 kernel using the futex(2) system call.

 To "up" a futex, execute the proper assembler instructions that will cause the host CPU to

 atomically increment the integer. Afterward, check if it has in fact changed from 0 to 1,

 in which case there were no waiters and the operation is done. This is the noncontended

 case which is fast and should be common.

 In the contended case, the atomic increment changed the counter from -1 (or some other

 negative number). If this is detected, there are waiters. User space should now set the

 counter to 1 and instruct the kernel to wake up any waiters using the FUTEX_WAKE opera?

 tion.

 Waiting on a futex, to "down" it, is the reverse operation. Atomically decrement the

 counter and check if it changed to 0, in which case the operation is done and the futex

 was uncontended. In all other circumstances, the process should set the counter to -1 and

 request that the kernel wait for another process to up the futex. This is done using the

 FUTEX_WAIT operation.

 The futex(2) system call can optionally be passed a timeout specifying how long the kernel

 should wait for the futex to be upped. In this case, semantics are more complex and the

 programmer is referred to futex(2) for more details. The same holds for asynchronous fu?

 tex waiting.

VERSIONS

 Initial futex support was merged in Linux 2.5.7 but with different semantics from those

 described above. Current semantics are available from Linux 2.5.40 onward.

NOTES

 To reiterate, bare futexes are not intended as an easy-to-use abstraction for end users.

 Implementors are expected to be assembly literate and to have read the sources of the fu?

 tex user-space library referenced below.

 This man page illustrates the most common use of the futex(2) primitives; it is by no

 means the only one.

SEE ALSO

 clone(2), futex(2), get_robust_list(2), set_robust_list(2), set_tid_address(2),

 pthreads(7) Page 2/3

 Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux (proceedings of the Ottawa

 Linux Symposium 2002), futex example library, futex-*.tar.bz2 ?ftp://ftp.kernel.org/pub

 /linux/kernel/people/rusty/?.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 FUTEX(7)

Page 3/3

