PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'gai_cancel.3'

$ man gai_cancel.3

GETADDRINFO_A(3) Linux Programmer's Manual GETADDRINFO_A(3)
NAME
getaddrinfo_a, gai_suspend, gai_error, gai_cancel - asynchronous network address and ser?
vice translation
SYNOPSIS
#define _GNU_SOURCE [* See feature_test_macros(7) */
#include <netdb.h>
int getaddrinfo_a(int mode, struct gaicb *list[],
int nitems, struct sigevent *sevp);
int gai_suspend(const struct gaicb * const list[], int nitems,
const struct timespec *timeout);
int gai_error(struct gaicb *req);
int gai_cancel(struct gaicb *req);
Link with -lanl.
DESCRIPTION
The getaddrinfo_a() function performs the same task as getaddrinfo(3), but allows multiple
name look-ups to be performed asynchronously, with optional naotification on completion of
look-up operations.
The mode argument has one of the following values:
GAI_WAIT
Perform the look-ups synchronously. The call blocks until the look-ups have com?
pleted.

GAl_NOWAIT Page 1/12

Perform the look-ups asynchronously. The call returns immediately, and the re?

quests are resolved in the background. See the discussion of the sevp argument be?

low.
The array list specifies the look-up requests to process. The nitems argument specifies
the number of elements in list. The requested look-up operations are started in parallel.
NULL elements in list are ignored. Each request is described by a gaicb structure, de?
fined as follows:

struct gaicb {

const char *ar_name;

const char *ar_service;

const struct addrinfo *ar_request;

struct addrinfo *ar_result;

h

The elements of this structure correspond to the arguments of getaddrinfo(3). Thus,
ar_name corresponds to the node argument and ar_service to the service argument, identify?
ing an Internet host and a service. The ar_request element corresponds to the hints argu?
ment, specifying the criteria for selecting the returned socket address structures. Fi?
nally, ar_result corresponds to the res argument; you do not need to initialize this ele?
ment, it will be automatically set when the request is resolved. The addrinfo structure
referenced by the last two elements is described in getaddrinfo(3).
When mode is specified as GAl_NOWAIT, natifications about resolved requests can be ob?
tained by employing the sigevent structure pointed to by the sevp argument. For the defi?
nition and general details of this structure, see sigevent(7). The sevp->sigev_notify
field can have the following values:
SIGEV_NONE

Don't provide any notification.
SIGEV_SIGNAL

When a look-up completes, generate the signal sigev_signo for the process. See

sigevent(7) for general details. The si_code field of the siginfo_t structure will

be setto SI_ASYNCNL.
SIGEV_THREAD

When a look-up completes, invoke sigev_notify function as if it were the start

function of a new thread. See sigevent(7) for detalils.

Page 2/12

For SIGEV_SIGNAL and SIGEV_THREAD, it may be useful to point sevp->sigev_value.sival_ptr

to list.

The gai_suspend() function suspends execution of the calling thread, waiting for the com?

pletion of one or more requests in the array list. The nitems argument specifies the size

of the array list. The call blocks until one of the following occurs:

* One or more of the operations in list completes.

* The call is interrupted by a signal that is caught.

* The time interval specified in timeout elapses. This argument specifies a timeout in
seconds plus nanoseconds (see nanosleep(2) for details of the timespec structure). If
timeout is NULL, then the call blocks indefinitely (until one of the events above oc?
curs).

No explicit indication of which request was completed is given; you must determine which

request(s) have completed by iterating with gai_error() over the list of requests.

The gai_error() function returns the status of the request req: either EAI_INPROGRESS if

the request was not completed yet, 0 if it was handled successfully, or an error code if

the request could not be resolved.

The gai_cancel() function cancels the request req. If the request has been canceled suc?

cessfully, the error status of the request will be set to EAI_CANCELED and normal asyn?

chronous notification will be performed. The request cannot be canceled if it is cur?
rently being processed; in that case, it will be handled as if gai_cancel() has never been
called. If req is NULL, an attempt is made to cancel all outstanding requests that the
process has made.

RETURN VALUE

The getaddrinfo_a() function returns 0 if all of the requests have been enqueued success?

fully, or one of the following nonzero error codes:

EAI_AGAIN

The resources necessary to enqueue the look-up requests were not available. The
application may check the error status of each request to determine which ones
failed.

EAl_MEMORY

Out of memory.

EAI_SYSTEM

mode is invalid. Page 3/12

The gai_suspend() function returns O if at least one of the listed requests has been com?
pleted. Otherwise, it returns one of the following nonzero error codes:
EAI_AGAIN
The given timeout expired before any of the requests could be completed.
EAI_ALLDONE
There were no actual requests given to the function.
EAL_INTR
A signal has interrupted the function. Note that this interruption might have been
caused by signal notification of some completed look-up request.
The gai_error() function can return EAI_INPROGRESS for an unfinished look-up request, 0
for a successfully completed look-up (as described above), one of the error codes that
could be returned by getaddrinfo(3), or the error code EAl_CANCELED if the request has
been canceled explicitly before it could be finished.
The gai_cancel() function can return one of these values:
EAI_CANCELED
The request has been canceled successfully.
EAI_NOTCANCELED
The request has not been canceled.
EAI_ALLDONE
The request has already completed.
The gai_strerror(3) function translates these error codes to a human readable string,
suitable for error reporting.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 72?7?7??7??7?7??7?7

?Interface ? Attribute ? Value ?

PPV ???7?72?7?7??7?2?7?7???7??7?7??7?7

?getaddrinfo_a(), gai_suspend(), ? Thread safety ? MT-Safe ?
?gai_error(), gai_cancel() ? ? ?

PP 2????7????????7???7???7???7??7?77?777?777

CONFORMING TO
These functions are GNU extensions; they first appeared in glibc in version 2.2.3.

NOTES Page 4/12

The interface of getaddrinfo_a() was modeled after the lio_listio(3) interface.
EXAMPLES
Two examples are provided: a simple example that resolves several requests in parallel
synchronously, and a complex example showing some of the asynchronous capabilities.
Synchronous example
The program below simply resolves several hosthames in parallel, giving a speed-up com?
pared to resolving the hostnames sequentially using getaddrinfo(3). The program might be
used like this:
$./a.out ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz
ftp.us.kernel.org: 128.30.2.36
enoent.linuxfoundation.org: Name or service not known
gnu.cz: 87.236.197.13
Here is the program source code
#define _GNU_SOURCE
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int
main(int argc, char *argv[])
{
int ret;
struct gaicb *regs[argc - 1];
char host[NI_MAXHOST];
struct addrinfo *res;
if (argc < 2) {
fprintf(stderr, "Usage: %s HOST...\n", argv[0]);
exit(EXIT_FAILURE);
}
for (inti=0;i<argc-1;i++){
reqs|i] = malloc(sizeof(*reqs|0]));
if (regs[i] == NULL) {

perror("malloc"); Page 5/12

exit(EXIT_FAILURE);
}
memset(reqsyi], 0, sizeof(*reqs[0]));
reqs|i]->ar_name = argv[i + 1];
}
ret = getaddrinfo_a(GAI_WAIT, regs, argc - 1, NULL);
if (ret 1= 0) {
fprintf(stderr, "getaddrinfo_a() failed: %s\n",
gai_strerror(ret));
exit(EXIT_FAILURE);
}
for (inti=0;i<argc-1;i++){
printf("%s: ", reqsli]->ar_name);
ret = gai_error(reqsli]);
if (ret==0) {
res = reqsl[i]->ar_result;
ret = getnameinfo(res->ai_addr, res->ai_addrlen,
host, sizeof(host),
NULL, 0, NI_NUMERICHOST);
if (ret 1= 0) {
fprintf(stderr, "getnameinfo() failed: %s\n",
gai_strerror(ret));
exit(EXIT_FAILURE);
}
puts(host);
}else {

puts(gai_strerror(ret));

}

exit(EXIT_SUCCESS);

Asynchronous example

This example shows a simple interactive getaddrinfo_a() front-end

. The notification fa?

Page 6/12

cility is not demonstrated.

An example session might look like this:

$.Ja.out

> a ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz
>c2

[2] gnu.cz: Request not canceled

>w01

[00] ftp.us.kernel.org: Finished

> |

[00] ftp.us.kernel.org: 216.165.129.139

[01] encent.linuxfoundation.org: Processing request in progress
[02] gnu.cz: 87.236.197.13

> |

[00] ftp.us.kernel.org: 216.165.129.139

[01] enoent.linuxfoundation.org: Name or service not known

[02] gnu.cz: 87.236.197.13

The program source is as follows:

#define _GNU_SOURCE

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

static struct gaicb **reqs = NULL;

static int nreqgs = 0;

static char *

getcmd(void)

{

static char buf[256];

fputs("> ", stdout); fflush(stdout);

if (fgets(buf, sizeof(buf), stdin) == NULL)
return NULL,;

if (buf[strlen(buf) - 1] =="\n")

buf[strlen(buf) - 1] = 0;

Page 7/12

return buf;
}
/* Add requests for specified hostnames */
static void
add_requests(void)
{
int nreqs_base = nregs;
char *host;
int ret;
while ((host = strtok(NULL, " ")) {
nreqs++;
reqs = realloc(regs, sizeof(regs[0]) * nreqgs);
reqgs[nregs - 1] = calloc(1, sizeof(*reqgs[0]));
reqgs[nregs - 1]->ar_name = strdup(host);
}
/* Queue nreqs_base..nregs requests. */
ret = getaddrinfo_a(GAI_NOWAIT, &reqgs[nreqs_base],
nregs - nregs_base, NULL);
if (ret) {
fprintf(stderr, "getaddrinfo_a() failed: %s\n",
gai_strerror(ret));

exit(EXIT_FAILURE);

}

/* Wait until at least one of specified requests completes */
static void
wait_requests(void)
{
char *id;
int ret, n;
struct gaicb const **wait_reqs = calloc(nregs, sizeof(*wait_reqs));
/* NULL elements are ignored by gai_suspend(). */

while ((id = strtok(NULL, " ")) '= NULL) { Page 8/12

n = atoi(id);
if (n >= nregs) {

printf("Bad request number: %s\n", id);

return;
}
wait_regs[n] = reqs[n];
}
ret = gai_suspend(wait_reqgs, nreqgs, NULL),
if (ret) {
printf("gai_suspend(): %s\n", gai_strerror(ret));
return;
}

for (inti=0;i<nreqgs; i++) {
if (wait_reqs[i] == NULL)
continue;
ret = gai_error(reqsli]);
if (ret == EAl_INPROGRESS)
continue;
printf("[%02d] %s: %s\n", i, reqs|i]->ar_name,

ret == 0 ? "Finished" : gai_strerror(ret));

}

/* Cancel specified requests */
static void
cancel_requests(void)
{
char *id;
int ret, n;
while ((id = strtok(NULL, " ")) '= NULL) {
n = atoi(id);
if (n >=nreqs) {
printf("Bad request number: %s\n", id);

return; Page 9/12

}
ret = gai_cancel(regs[n]);
printf("[%s] %s: %s\n", id, regs[atoi(id)]->ar_name,

gai_strerror(ret));

}

/* List all requests */
static void
list_requests(void)
{
int ret;
char host[NI_MAXHOST];
struct addrinfo *res;
for (inti=0;i<nregs; i++) {
printf("[%02d] %s: ", i, regs[i]->ar_name);
ret = gai_error(reqsli]);
if ('ret) {
res = reqs[i]->ar_result;
ret = getnameinfo(res->ai_addr, res->ai_addrlen,
host, sizeof(host),
NULL, 0, NI_NUMERICHOST);
if (ret) {
fprintf(stderr, "getnameinfo() failed: %s\n",
gai_strerror(ret));
exit(EXIT_FAILURE);
}
puts(host);
}else {

puts(gai_strerror(ret));

int

Page 10/12

main(int argc, char *argv[])
{
char *cmdline;
char *cmd,;
while ((cmdline = getcmd()) '= NULL) {
cmd = strtok(cmdline, " ");
if (cmd == NULL) {
list_requests();
}else {
switch (cmd[0]) {
case 'a’.
add_requests();
break;
case 'w"
wait_requests();
break;
case 'c".
cancel_requests();
break;
case 'l
list_requests();
break;
default:
fprintf(stderr, "Bad command: %c\n", cmd[0]);

break;

}
exit(EXIT_SUCCESS);

}
SEE ALSO
getaddrinfo(3), inet(3), lio_listio(3), hostname(7), ip(7), sigevent(7)

COLOPHON Page 11/12

This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETADDRINFO_A(3)

Page 12/12

