FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'getgrent_r.3'

$ man getgrent_r.3
GETGRENT_R(3) Linux Programmer's Manual GETGRENT_R(3)
NAME

getgrent_r, fgetgrent_r - get group file entry reentrantly
SYNOPSIS
#include <grp.h>
int getgrent_r(struct group *gbuf, char *buf,
size_t buflen, struct group **gbufp);
int fgetgrent_r(FILE *stream, struct group *gbuf, char *buf,
size_t buflen, struct group **gbufp);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
getgrent r(): _GNU_SOURCE
fgetgrent_r():
Since glibc 2.19:
_DEFAULT_SOURCE
Glibc 2.19 and earlier:
_SVID_SOURCE

DESCRIPTION

The functions getgrent_r() and fgetgrent_r() are the reentrant versions of getgrent(3) and
fgetgrent(3). The former reads the next group entry from the stream initialized by set?
grent(3). The latter reads the next group entry from stream.

The group structure is defined in <grp.h> as follows:

struct group {

char *gr_name; [* group name */ Page 1/4

char *gr_passwd; /* group password */
gid_t gr_gid; [* group ID */
char **gr_mem; /* NULL-terminated array of pointers
to names of group members */
¥
For more information about the fields of this structure, see group(5).
The nonreentrant functions return a pointer to static storage, where this static storage
contains further pointers to group name, password and members. The reentrant functions
described here return all of that in caller-provided buffers. First of all there is the
buffer gbuf that can hold a struct group. And next the buffer buf of size buflen that can
hold additional strings. The result of these functions, the struct group read from the
stream, is stored in the provided buffer *gbuf, and a pointer to this struct group is re?
turned in *gbufp.
RETURN VALUE
On success, these functions return 0 and *gbufp is a pointer to the struct group. On er?
ror, these functions return an error value and *gbufp is NULL.
ERRORS
ENOENT No more entries.
ERANGE Insufficient buffer space supplied. Try again with larger buffer.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 7?7?????7????7???7??77??7?7?7?77?7?7

?Interface ? Attribute ? Value ?

QP07 77?7?7?7??77?77?77

?getgrent_r() ? Thread safety ? MT-Unsafe race:grent locale ?

QP07 7?72?7?7?7?77?77?77

?fgetgrent_r() ? Thread safety ? MT-Safe ?

QPP 7?72?7?7?77?77?77?77

In the above table, grent in race:grent signifies that if any of the functions set?
grent(3), getgrent(3), endgrent(3), or getgrent_r() are used in parallel in different
threads of a program, then data races could occur.

CONFORMING TO

These functions are GNU extensions, done in a style resembling the POSIX version of func? Page 2/4

tions like getpwnam_r(3). Other systems use the prototype
struct group *getgrent_r(struct group *grp, char *buf,
int buflen);
or, better,
int getgrent_r(struct group *grp, char *buf, int buflen,
FILE **gr_fp);
NOTES
The function getgrent_r() is not really reentrant since it shares the reading position in
the stream with all other threads.
EXAMPLES
#define _GNU_SOURCE
#include <grp.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#define BUFLEN 4096
int
main(void)
{
struct group grp;
struct group *grpp;
char buf[BUFLEN];
int i;
setgrent();
while (1) {
i = getgrent_r(&grp, buf, sizeof(buf), &grpp);
if (i)
break;
printf("%s (%jd):", grpp->gr_name, (intmax_t) grpp->gr_gid);
for (intj=0;;j++) {
if (grpp->gr_mem|[j] == NULL)
break;

printf(" %s", grpp->gr_mem([j]); Page 3/4

}
printf("\n");
}
endgrent();
exit(EXIT_SUCCESS);
}
SEE ALSO
fgetgrent(3), getgrent(3), getgrgid(3), getgrnam(3), putgrent(3), group(5)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETGRENT_R(3)

Page 4/4

