
Rocky Enterprise Linux 9.2 Manual Pages on command 'getpgrp.2'

$ man getpgrp.2

SETPGID(2) Linux Programmer's Manual SETPGID(2)

NAME

 setpgid, getpgid, setpgrp, getpgrp - set/get process group

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 int setpgid(pid_t pid, pid_t pgid);

 pid_t getpgid(pid_t pid);

 pid_t getpgrp(void); /* POSIX.1 version */

 pid_t getpgrp(pid_t pid); /* BSD version */

 int setpgrp(void); /* System V version */

 int setpgrp(pid_t pid, pid_t pgid); /* BSD version */

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 getpgid():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

 setpgrp() (POSIX.1):

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _SVID_SOURCE

 setpgrp() (BSD), getpgrp() (BSD):

 [These are available only before glibc 2.19]

 _BSD_SOURCE && Page 1/4

 ! (_POSIX_SOURCE || _POSIX_C_SOURCE || _XOPEN_SOURCE ||

 _GNU_SOURCE || _SVID_SOURCE)

DESCRIPTION

 All of these interfaces are available on Linux, and are used for getting and setting the

 process group ID (PGID) of a process. The preferred, POSIX.1-specified ways of doing this

 are: getpgrp(void), for retrieving the calling process's PGID; and setpgid(), for setting

 a process's PGID.

 setpgid() sets the PGID of the process specified by pid to pgid. If pid is zero, then the

 process ID of the calling process is used. If pgid is zero, then the PGID of the process

 specified by pid is made the same as its process ID. If setpgid() is used to move a

 process from one process group to another (as is done by some shells when creating pipe?

 lines), both process groups must be part of the same session (see setsid(2) and creden?

 tials(7)). In this case, the pgid specifies an existing process group to be joined and

 the session ID of that group must match the session ID of the joining process.

 The POSIX.1 version of getpgrp(), which takes no arguments, returns the PGID of the call?

 ing process.

 getpgid() returns the PGID of the process specified by pid. If pid is zero, the process

 ID of the calling process is used. (Retrieving the PGID of a process other than the

 caller is rarely necessary, and the POSIX.1 getpgrp() is preferred for that task.)

 The System V-style setpgrp(), which takes no arguments, is equivalent to setpgid(0, 0).

 The BSD-specific setpgrp() call, which takes arguments pid and pgid, is a wrapper function

 that calls

 setpgid(pid, pgid)

 Since glibc 2.19, the BSD-specific setpgrp() function is no longer exposed by <unistd.h>;

 calls should be replaced with the setpgid() call shown above.

 The BSD-specific getpgrp() call, which takes a single pid argument, is a wrapper function

 that calls

 getpgid(pid)

 Since glibc 2.19, the BSD-specific getpgrp() function is no longer exposed by <unistd.h>;

 calls should be replaced with calls to the POSIX.1 getpgrp() which takes no arguments (if

 the intent is to obtain the caller's PGID), or with the getpgid() call shown above.

RETURN VALUE

 On success, setpgid() and setpgrp() return zero. On error, -1 is returned, and errno is Page 2/4

 set appropriately.

 The POSIX.1 getpgrp() always returns the PGID of the caller.

 getpgid(), and the BSD-specific getpgrp() return a process group on success. On error, -1

 is returned, and errno is set appropriately.

ERRORS

 EACCES An attempt was made to change the process group ID of one of the children of the

 calling process and the child had already performed an execve(2) (setpgid(), setp?

 grp()).

 EINVAL pgid is less than 0 (setpgid(), setpgrp()).

 EPERM An attempt was made to move a process into a process group in a different session,

 or to change the process group ID of one of the children of the calling process and

 the child was in a different session, or to change the process group ID of a ses?

 sion leader (setpgid(), setpgrp()).

 ESRCH For getpgid(): pid does not match any process. For setpgid(): pid is not the call?

 ing process and not a child of the calling process.

CONFORMING TO

 setpgid() and the version of getpgrp() with no arguments conform to POSIX.1-2001.

 POSIX.1-2001 also specifies getpgid() and the version of setpgrp() that takes no argu?

 ments. (POSIX.1-2008 marks this setpgrp() specification as obsolete.)

 The version of getpgrp() with one argument and the version of setpgrp() that takes two ar?

 guments derive from 4.2BSD, and are not specified by POSIX.1.

NOTES

 A child created via fork(2) inherits its parent's process group ID. The PGID is preserved

 across an execve(2).

 Each process group is a member of a session and each process is a member of the session of

 which its process group is a member. (See credentials(7).)

 A session can have a controlling terminal. At any time, one (and only one) of the process

 groups in the session can be the foreground process group for the terminal; the remaining

 process groups are in the background. If a signal is generated from the terminal (e.g.,

 typing the interrupt key to generate SIGINT), that signal is sent to the foreground

 process group. (See termios(3) for a description of the characters that generate sig?

 nals.) Only the foreground process group may read(2) from the terminal; if a background

 process group tries to read(2) from the terminal, then the group is sent a SIGTTIN signal, Page 3/4

 which suspends it. The tcgetpgrp(3) and tcsetpgrp(3) functions are used to get/set the

 foreground process group of the controlling terminal.

 The setpgid() and getpgrp() calls are used by programs such as bash(1) to create process

 groups in order to implement shell job control.

 If the termination of a process causes a process group to become orphaned, and if any mem?

 ber of the newly orphaned process group is stopped, then a SIGHUP signal followed by a

 SIGCONT signal will be sent to each process in the newly orphaned process group. An or?

 phaned process group is one in which the parent of every member of process group is either

 itself also a member of the process group or is a member of a process group in a different

 session (see also credentials(7)).

SEE ALSO

 getuid(2), setsid(2), tcgetpgrp(3), tcsetpgrp(3), termios(3), credentials(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SETPGID(2)

Page 4/4

