FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'getppid.2’

$ man getppid.2
GETPID(2) Linux Programmer's Manual GETPID(2)
NAME
getpid, getppid - get process identification
SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
pid_t getpid(void);
pid_t getppid(void);
DESCRIPTION
getpid() returns the process ID (PID) of the calling process. (This is often used by rou?
tines that generate unique temporary filenames.)
getppid() returns the process ID of the parent of the calling process. This will be ei?
ther the ID of the process that created this process using fork(), or, if that process has
already terminated, the ID of the process to which this process has been reparented (ei?

ther init(1) or a "subreaper" process defined via the prctl(2) PR_SET_CHILD_SUBREAPER op?

eration).
ERRORS
These functions are always successful.
CONFORMING TO
POSIX.1-2001, POSIX.1-2008, 4.3BSD, SVr4.
NOTES
If the caller's parent is in a different PID namespace (see pid_namespaces(7)), getppid()

returns 0. Page 1/2



From a kernel perspective, the PID (which is shared by all of the threads in a multi?
threaded process) is sometimes also known as the thread group ID (TGID). This contrasts
with the kernel thread ID (TID), which is unique for each thread. For further details,
see gettid(2) and the discussion of the CLONE_THREAD flag in clone(2).
C library/kernel differences

From glibc version 2.3.4 up to and including version 2.24, the glibc wrapper function for
getpid() cached PIDs, with the goal of avoiding additional system calls when a process
calls getpid() repeatedly. Normally this caching was invisible, but its correct operation
relied on support in the wrapper functions for fork(2), vfork(2), and clone(2): if an ap?
plication bypassed the glibc wrappers for these system calls by using syscall(2), then a
call to getpid() in the child would return the wrong value (to be precise: it would return
the PID of the parent process). In addition, there were cases where getpid() could return
the wrong value even when invoking clone(2) via the glibc wrapper function. (For a dis?
cussion of one such case, see BUGS in clone(2).) Furthermore, the complexity of the
caching code had been the source of a few bugs within glibc over the years.
Because of the aforementioned problems, since glibc version 2.25, the PID cache is re?
moved: calls to getpid() always invoke the actual system call, rather than returning a
cached value.
On Alpha, instead of a pair of getpid() and getppid() system calls, a single getxpid()
system call is provided, which returns a pair of PID and parent PID. The glibc getpid()
and getppid() wrapper functions transparently deal with this. See syscall(2) for details
regarding register mapping.

SEE ALSO
clone(2), fork(2), gettid(2), kill(2), exec(3), mkstemp(3), tempnam(3), tmpfile(3), tmp?
nam(3), credentials(7), pid_namespaces(7)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 GETPID(2)

Page 2/2



