
Rocky Enterprise Linux 9.2 Manual Pages on command 'getppid.2'

$ man getppid.2

GETPID(2) Linux Programmer's Manual GETPID(2)

NAME

 getpid, getppid - get process identification

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 pid_t getpid(void);

 pid_t getppid(void);

DESCRIPTION

 getpid() returns the process ID (PID) of the calling process. (This is often used by rou?

 tines that generate unique temporary filenames.)

 getppid() returns the process ID of the parent of the calling process. This will be ei?

 ther the ID of the process that created this process using fork(), or, if that process has

 already terminated, the ID of the process to which this process has been reparented (ei?

 ther init(1) or a "subreaper" process defined via the prctl(2) PR_SET_CHILD_SUBREAPER op?

 eration).

ERRORS

 These functions are always successful.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.3BSD, SVr4.

NOTES

 If the caller's parent is in a different PID namespace (see pid_namespaces(7)), getppid()

 returns 0. Page 1/2

 From a kernel perspective, the PID (which is shared by all of the threads in a multi?

 threaded process) is sometimes also known as the thread group ID (TGID). This contrasts

 with the kernel thread ID (TID), which is unique for each thread. For further details,

 see gettid(2) and the discussion of the CLONE_THREAD flag in clone(2).

 C library/kernel differences

 From glibc version 2.3.4 up to and including version 2.24, the glibc wrapper function for

 getpid() cached PIDs, with the goal of avoiding additional system calls when a process

 calls getpid() repeatedly. Normally this caching was invisible, but its correct operation

 relied on support in the wrapper functions for fork(2), vfork(2), and clone(2): if an ap?

 plication bypassed the glibc wrappers for these system calls by using syscall(2), then a

 call to getpid() in the child would return the wrong value (to be precise: it would return

 the PID of the parent process). In addition, there were cases where getpid() could return

 the wrong value even when invoking clone(2) via the glibc wrapper function. (For a dis?

 cussion of one such case, see BUGS in clone(2).) Furthermore, the complexity of the

 caching code had been the source of a few bugs within glibc over the years.

 Because of the aforementioned problems, since glibc version 2.25, the PID cache is re?

 moved: calls to getpid() always invoke the actual system call, rather than returning a

 cached value.

 On Alpha, instead of a pair of getpid() and getppid() system calls, a single getxpid()

 system call is provided, which returns a pair of PID and parent PID. The glibc getpid()

 and getppid() wrapper functions transparently deal with this. See syscall(2) for details

 regarding register mapping.

SEE ALSO

 clone(2), fork(2), gettid(2), kill(2), exec(3), mkstemp(3), tempnam(3), tmpfile(3), tmp?

 nam(3), credentials(7), pid_namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 GETPID(2)

Page 2/2

