PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'getprotoent_r.3'

$ man getprotoent_r.3

GETPROTOENT_R(3) Linux Programmer's Manual GETPROTOENT_R(3)
NAME

getprotoent_r, getprotobyname_r, getprotobynumber_r - get protocol entry (reentrant)
SYNOPSIS
#include <netdb.h>
int getprotoent_r(struct protoent *result_buf, char *buf,
size_t buflen, struct protoent **result);
int getprotobyname_r(const char *name,
struct protoent *result_buf, char *buf,
size_t buflen, struct protoent **result);
int getprotobynumber_r(int proto,
struct protoent *result_buf, char *buf,
size_t buflen, struct protoent **result);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getprotoent_r(), getprotobyname_r(), getprotobynumber_r():

Since glibc 2.19:
_DEFAULT_SOURCE
Glibc 2.19 and earlier:
_BSD_SOURCE || _SVID_SOURCE
DESCRIPTION
The getprotoent_r(), getprotobyname_r(), and getprotobynumber_r() functions are the reen?
trant equivalents of, respectively, getprotoent(3), getprotobyname(3), and getprotobynum?

ber(3). They differ in the way that the protoent structure is returned, and in the func? Page 1/5

tion calling signature and return value. This manual page describes just the differences
from the nonreentrant functions.
Instead of returning a pointer to a statically allocated protoent structure as the func?
tion result, these functions copy the structure into the location pointed to by re?
sult_buf.
The buf array is used to store the string fields pointed to by the returned protoent
structure. (The nonreentrant functions allocate these strings in static storage.) The
size of this array is specified in buflen. If bufis too small, the call fails with the
error ERANGE, and the caller must try again with a larger buffer. (A buffer of length
1024 bytes should be sufficient for most applications.)
If the function call successfully obtains a protocol record, then *result is set pointing
to result_buf; otherwise, *result is set to NULL.
RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in ERRORS.
On error, record not found (getprotobyname_r(), getprotobynumber_r()), or end of input
(getprotoent_r()) result is set to NULL.
ERRORS
ENOENT (getprotoent_r()) No more records in database.
ERANGE buf is too small. Try again with a larger buffer (and increased buflen).
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 2?7?77??7????7?77?7?27?7?777?7?77?

?Interface ? Attribute ? Value ?

PPV 2?7?77??7??7?7?7?7??27?7?777?77?

?getprotoent_r(), ? Thread safety ? MT-Safe locale ?
?getprotobyname_r(), ? ? ?
?getprotobynumber_r() ? ? ?

PPV 2?7?77??7?7???7?77??27?7?777?77?

CONFORMING TO
These functions are GNU extensions. Functions with similar names exist on some other sys?
tems, though typically with different calling signatures.

EXAMPLES Page 2/5

The program below uses getprotobyname_r() to retrieve the protocol record for the protocol
named in its first command-line argument. If a second (integer) command-line argument is
supplied, it is used as the initial value for buflen; if getprotobyname_r() fails with the
error ERANGE, the program retries with larger buffer sizes. The following shell session
shows a couple of sample runs:

$.Ja.outtcp 1

ERANGE! Retrying with larger buffer

getprotobyname_r() returned: O (success) (buflen=78)

p_name=tcp; p_proto=6; aliases=TCP

$ Ja.out xxx 1

ERANGE! Retrying with larger buffer

getprotobyname_r() returned: O (success) (buflen=100)

Call failed/record not found

Program source

#define _GNU_SOURCE
#include <ctype.h>
#include <netdb.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#define MAX_BUF 10000
int
main(int argc, char *argv[])
{

int buflen, erange_cnt, s;

struct protoent result_buf;

struct protoent *result;

char buf[MAX_BUF];

if (argc < 2) {

printf("Usage: %s proto-name [buflen]\n", argv[0]);
exit(EXIT_FAILURE);

} Page 3/5

buflen = 1024,
if (argc > 2)
buflen = atoi(argv[2]);
if (ouflen > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);
}
erange_cnt = 0;
do {
s = getprotobyname_r(argv[1], &result_buf,
buf, buflen, &result);
if (s == ERANGE) {
if (erange_cnt == 0)
printf("ERANGE! Retrying with larger buffer\n");
erange_cnt++;
/* Increment a byte at a time so we can see exactly
what size buffer was required */
buflen++;
if (buflen > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);

exit(EXIT_FAILURE);

}
} while (s == ERANGE);
printf("getprotobyname_r() returned: %s (buflen=%d)\n",
(s==0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" :
strerror(s), buflen);
if (s!=0 || result == NULL) {
printf("Call failed/record not found\n");
exit(EXIT_FAILURE);
}
printf("p_name=%s; p_proto=%d; aliases=",

result_buf.p_name, result_buf.p_proto); Page 4/5

for (char **p = result_buf.p_aliases; *p = NULL; p++)
printf("%s ", *p);
printf("\n");
exit(EXIT_SUCCESS);
}
SEE ALSO
getprotoent(3), protocols(5)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETPROTOENT_R(3)

Page 5/5

