
Rocky Enterprise Linux 9.2 Manual Pages on command 'getwd.3'

$ man getwd.3

GETCWD(3) Linux Programmer's Manual GETCWD(3)

NAME

 getcwd, getwd, get_current_dir_name - get current working directory

SYNOPSIS

 #include <unistd.h>

 char *getcwd(char *buf, size_t size);

 char *getwd(char *buf);

 char *get_current_dir_name(void);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 get_current_dir_name():

 _GNU_SOURCE

 getwd():

 Since glibc 2.12:

 (_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)

 || /* Glibc since 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 Before glibc 2.12:

 _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

 These functions return a null-terminated string containing an absolute pathname that is

 the current working directory of the calling process. The pathname is returned as the

 function result and via the argument buf, if present.

 The getcwd() function copies an absolute pathname of the current working directory to the Page 1/4

 array pointed to by buf, which is of length size.

 If the length of the absolute pathname of the current working directory, including the

 terminating null byte, exceeds size bytes, NULL is returned, and errno is set to ERANGE;

 an application should check for this error, and allocate a larger buffer if necessary.

 As an extension to the POSIX.1-2001 standard, glibc's getcwd() allocates the buffer dynam?

 ically using malloc(3) if buf is NULL. In this case, the allocated buffer has the length

 size unless size is zero, when buf is allocated as big as necessary. The caller should

 free(3) the returned buffer.

 get_current_dir_name() will malloc(3) an array big enough to hold the absolute pathname of

 the current working directory. If the environment variable PWD is set, and its value is

 correct, then that value will be returned. The caller should free(3) the returned buffer.

 getwd() does not malloc(3) any memory. The buf argument should be a pointer to an array

 at least PATH_MAX bytes long. If the length of the absolute pathname of the current work?

 ing directory, including the terminating null byte, exceeds PATH_MAX bytes, NULL is re?

 turned, and errno is set to ENAMETOOLONG. (Note that on some systems, PATH_MAX may not be

 a compile-time constant; furthermore, its value may depend on the filesystem, see path?

 conf(3).) For portability and security reasons, use of getwd() is deprecated.

RETURN VALUE

 On success, these functions return a pointer to a string containing the pathname of the

 current working directory. In the case of getcwd() and getwd() this is the same value as

 buf.

 On failure, these functions return NULL, and errno is set to indicate the error. The con?

 tents of the array pointed to by buf are undefined on error.

ERRORS

 EACCES Permission to read or search a component of the filename was denied.

 EFAULT buf points to a bad address.

 EINVAL The size argument is zero and buf is not a null pointer.

 EINVAL getwd(): buf is NULL.

 ENAMETOOLONG

 getwd(): The size of the null-terminated absolute pathname string exceeds PATH_MAX

 bytes.

 ENOENT The current working directory has been unlinked.

 ENOMEM Out of memory. Page 2/4

 ERANGE The size argument is less than the length of the absolute pathname of the working

 directory, including the terminating null byte. You need to allocate a bigger ar?

 ray and try again.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?getcwd(), getwd() ? Thread safety ? MT-Safe ?

 ???

 ?get_current_dir_name() ? Thread safety ? MT-Safe env ?

 ???

CONFORMING TO

 getcwd() conforms to POSIX.1-2001. Note however that POSIX.1-2001 leaves the behavior of

 getcwd() unspecified if buf is NULL.

 getwd() is present in POSIX.1-2001, but marked LEGACY. POSIX.1-2008 removes the specifi?

 cation of getwd(). Use getcwd() instead. POSIX.1-2001 does not define any errors for

 getwd().

 get_current_dir_name() is a GNU extension.

NOTES

 Under Linux, these functions make use of the getcwd() system call (available since Linux

 2.1.92). On older systems they would query /proc/self/cwd. If both system call and proc

 filesystem are missing, a generic implementation is called. Only in that case can these

 calls fail under Linux with EACCES.

 These functions are often used to save the location of the current working directory for

 the purpose of returning to it later. Opening the current directory (".") and calling

 fchdir(2) to return is usually a faster and more reliable alternative when sufficiently

 many file descriptors are available, especially on platforms other than Linux.

 C library/kernel differences

 On Linux, the kernel provides a getcwd() system call, which the functions described in

 this page will use if possible. The system call takes the same arguments as the library

 function of the same name, but is limited to returning at most PATH_MAX bytes. (Before

 Linux 3.12, the limit on the size of the returned pathname was the system page size. On Page 3/4

 many architectures, PATH_MAX and the system page size are both 4096 bytes, but a few ar?

 chitectures have a larger page size.) If the length of the pathname of the current work?

 ing directory exceeds this limit, then the system call fails with the error ENAMETOOLONG.

 In this case, the library functions fall back to a (slower) alternative implementation

 that returns the full pathname.

 Following a change in Linux 2.6.36, the pathname returned by the getcwd() system call will

 be prefixed with the string "(unreachable)" if the current directory is not below the root

 directory of the current process (e.g., because the process set a new filesystem root us?

 ing chroot(2) without changing its current directory into the new root). Such behavior

 can also be caused by an unprivileged user by changing the current directory into another

 mount namespace. When dealing with pathname from untrusted sources, callers of the func?

 tions described in this page should consider checking whether the returned pathname starts

 with '/' or '(' to avoid misinterpreting an unreachable path as a relative pathname.

BUGS

 Since the Linux 2.6.36 change that added "(unreachable)" in the circumstances described

 above, the glibc implementation of getcwd() has failed to conform to POSIX and returned a

 relative pathname when the API contract requires an absolute pathname. With glibc 2.27

 onwards this is corrected; calling getcwd() from such a pathname will now result in fail?

 ure with ENOENT.

SEE ALSO

 pwd(1), chdir(2), fchdir(2), open(2), unlink(2), free(3), malloc(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2018-04-30 GETCWD(3)

Page 4/4

