
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-blame.1'

$ man git-blame.1

GIT-BLAME(1)                                Git Manual                               GIT-BLAME(1)

NAME

       git-blame - Show what revision and author last modified each line of a file

SYNOPSIS

       git blame [-c] [-b] [-l] [--root] [-t] [-f] [-n] [-s] [-e] [-p] [-w] [--incremental]

                   [-L <range>] [-S <revs-file>] [-M] [-C] [-C] [-C] [--since=<date>]

                   [--ignore-rev <rev>] [--ignore-revs-file <file>]

                   [--color-lines] [--color-by-age] [--progress] [--abbrev=<n>]

                   [<rev> | --contents <file> | --reverse <rev>..<rev>] [--] <file>

DESCRIPTION

       Annotates each line in the given file with information from the revision which last

       modified the line. Optionally, start annotating from the given revision.

       When specified one or more times, -L restricts annotation to the requested lines.

       The origin of lines is automatically followed across whole-file renames (currently there

       is no option to turn the rename-following off). To follow lines moved from one file to

       another, or to follow lines that were copied and pasted from another file, etc., see the

       -C and -M options.

       The report does not tell you anything about lines which have been deleted or replaced; you

       need to use a tool such as git diff or the "pickaxe" interface briefly mentioned in the

       following paragraph.

       Apart from supporting file annotation, Git also supports searching the development history

       for when a code snippet occurred in a change. This makes it possible to track when a code

       snippet was added to a file, moved or copied between files, and eventually deleted or Page 1/9



       replaced. It works by searching for a text string in the diff. A small example of the

       pickaxe interface that searches for blame_usage:

           $ git log --pretty=oneline -S'blame_usage'

           5040f17eba15504bad66b14a645bddd9b015ebb7 blame -S <ancestry-file>

           ea4c7f9bf69e781dd0cd88d2bccb2bf5cc15c9a7 git-blame: Make the output

OPTIONS

       -b

           Show blank SHA-1 for boundary commits. This can also be controlled via the

           blame.blankBoundary config option.

       --root

           Do not treat root commits as boundaries. This can also be controlled via the

           blame.showRoot config option.

       --show-stats

           Include additional statistics at the end of blame output.

       -L <start>,<end>, -L :<funcname>

           Annotate only the line range given by <start>,<end>, or by the function name regex

           <funcname>. May be specified multiple times. Overlapping ranges are allowed.

           <start> and <end> are optional.  -L <start> or -L <start>, spans from <start> to end

           of file.  -L ,<end> spans from start of file to <end>.

           <start> and <end> can take one of these forms:

           ?   number

               If <start> or <end> is a number, it specifies an absolute line number (lines count

               from 1).

           ?   /regex/

               This form will use the first line matching the given POSIX regex. If <start> is a

               regex, it will search from the end of the previous -L range, if any, otherwise

               from the start of file. If <start> is ^/regex/, it will search from the start of

               file. If <end> is a regex, it will search starting at the line given by <start>.

           ?   +offset or -offset

               This is only valid for <end> and will specify a number of lines before or after

               the line given by <start>.

           If :<funcname> is given in place of <start> and <end>, it is a regular expression that

           denotes the range from the first funcname line that matches <funcname>, up to the next Page 2/9



           funcname line.  :<funcname> searches from the end of the previous -L range, if any,

           otherwise from the start of file.  ^:<funcname> searches from the start of file. The

           function names are determined in the same way as git diff works out patch hunk headers

           (see Defining a custom hunk-header in gitattributes(5)).

       -l

           Show long rev (Default: off).

       -t

           Show raw timestamp (Default: off).

       -S <revs-file>

           Use revisions from revs-file instead of calling git-rev-list(1).

       --reverse <rev>..<rev>

           Walk history forward instead of backward. Instead of showing the revision in which a

           line appeared, this shows the last revision in which a line has existed. This requires

           a range of revision like START..END where the path to blame exists in START.  git

           blame --reverse START is taken as git blame --reverse START..HEAD for convenience.

       --first-parent

           Follow only the first parent commit upon seeing a merge commit. This option can be

           used to determine when a line was introduced to a particular integration branch,

           rather than when it was introduced to the history overall.

       -p, --porcelain

           Show in a format designed for machine consumption.

       --line-porcelain

           Show the porcelain format, but output commit information for each line, not just the

           first time a commit is referenced. Implies --porcelain.

       --incremental

           Show the result incrementally in a format designed for machine consumption.

       --encoding=<encoding>

           Specifies the encoding used to output author names and commit summaries. Setting it to

           none makes blame output unconverted data. For more information see the discussion

           about encoding in the git-log(1) manual page.

       --contents <file>

           When <rev> is not specified, the command annotates the changes starting backwards from

           the working tree copy. This flag makes the command pretend as if the working tree copy Page 3/9



           has the contents of the named file (specify - to make the command read from the

           standard input).

       --date <format>

           Specifies the format used to output dates. If --date is not provided, the value of the

           blame.date config variable is used. If the blame.date config variable is also not set,

           the iso format is used. For supported values, see the discussion of the --date option

           at git-log(1).

       --[no-]progress

           Progress status is reported on the standard error stream by default when it is

           attached to a terminal. This flag enables progress reporting even if not attached to a

           terminal. Can?t use --progress together with --porcelain or --incremental.

       -M[<num>]

           Detect moved or copied lines within a file. When a commit moves or copies a block of

           lines (e.g. the original file has A and then B, and the commit changes it to B and

           then A), the traditional blame algorithm notices only half of the movement and

           typically blames the lines that were moved up (i.e. B) to the parent and assigns blame

           to the lines that were moved down (i.e. A) to the child commit. With this option, both

           groups of lines are blamed on the parent by running extra passes of inspection.

           <num> is optional but it is the lower bound on the number of alphanumeric characters

           that Git must detect as moving/copying within a file for it to associate those lines

           with the parent commit. The default value is 20.

       -C[<num>]

           In addition to -M, detect lines moved or copied from other files that were modified in

           the same commit. This is useful when you reorganize your program and move code around

           across files. When this option is given twice, the command additionally looks for

           copies from other files in the commit that creates the file. When this option is given

           three times, the command additionally looks for copies from other files in any commit.

           <num> is optional but it is the lower bound on the number of alphanumeric characters

           that Git must detect as moving/copying between files for it to associate those lines

           with the parent commit. And the default value is 40. If there are more than one -C

           options given, the <num> argument of the last -C will take effect.

       --ignore-rev <rev>

           Ignore changes made by the revision when assigning blame, as if the change never Page 4/9



           happened. Lines that were changed or added by an ignored commit will be blamed on the

           previous commit that changed that line or nearby lines. This option may be specified

           multiple times to ignore more than one revision. If the blame.markIgnoredLines config

           option is set, then lines that were changed by an ignored commit and attributed to

           another commit will be marked with a ?  in the blame output. If the

           blame.markUnblamableLines config option is set, then those lines touched by an ignored

           commit that we could not attribute to another revision are marked with a *.

       --ignore-revs-file <file>

           Ignore revisions listed in file, which must be in the same format as an fsck.skipList.

           This option may be repeated, and these files will be processed after any files

           specified with the blame.ignoreRevsFile config option. An empty file name, "", will

           clear the list of revs from previously processed files.

       --color-lines

           Color line annotations in the default format differently if they come from the same

           commit as the preceding line. This makes it easier to distinguish code blocks

           introduced by different commits. The color defaults to cyan and can be adjusted using

           the color.blame.repeatedLines config option.

       --color-by-age

           Color line annotations depending on the age of the line in the default format. The

           color.blame.highlightRecent config option controls what color is used for each range

           of age.

       -h

           Show help message.

       -c

           Use the same output mode as git-annotate(1) (Default: off).

       --score-debug

           Include debugging information related to the movement of lines between files (see -C)

           and lines moved within a file (see -M). The first number listed is the score. This is

           the number of alphanumeric characters detected as having been moved between or within

           files. This must be above a certain threshold for git blame to consider those lines of

           code to have been moved.

       -f, --show-name

           Show the filename in the original commit. By default the filename is shown if there is Page 5/9



           any line that came from a file with a different name, due to rename detection.

       -n, --show-number

           Show the line number in the original commit (Default: off).

       -s

           Suppress the author name and timestamp from the output.

       -e, --show-email

           Show the author email instead of author name (Default: off). This can also be

           controlled via the blame.showEmail config option.

       -w

           Ignore whitespace when comparing the parent?s version and the child?s to find where

           the lines came from.

       --abbrev=<n>

           Instead of using the default 7+1 hexadecimal digits as the abbreviated object name,

           use <m>+1 digits, where <m> is at least <n> but ensures the commit object names are

           unique. Note that 1 column is used for a caret to mark the boundary commit.

THE DEFAULT FORMAT

       When neither --porcelain nor --incremental option is specified, git blame will output

       annotation for each line with:

       ?   abbreviated object name for the commit the line came from;

       ?   author ident (by default author name and date, unless -s or -e is specified); and

       ?   line number

       before the line contents.

THE PORCELAIN FORMAT

       In this format, each line is output after a header; the header at the minimum has the

       first line which has:

       ?   40-byte SHA-1 of the commit the line is attributed to;

       ?   the line number of the line in the original file;

       ?   the line number of the line in the final file;

       ?   on a line that starts a group of lines from a different commit than the previous one,

           the number of lines in this group. On subsequent lines this field is absent.

       This header line is followed by the following information at least once for each commit:

       ?   the author name ("author"), email ("author-mail"), time ("author-time"), and time zone

           ("author-tz"); similarly for committer. Page 6/9



       ?   the filename in the commit that the line is attributed to.

       ?   the first line of the commit log message ("summary").

       The contents of the actual line is output after the above header, prefixed by a TAB. This

       is to allow adding more header elements later.

       The porcelain format generally suppresses commit information that has already been seen.

       For example, two lines that are blamed to the same commit will both be shown, but the

       details for that commit will be shown only once. This is more efficient, but may require

       more state be kept by the reader. The --line-porcelain option can be used to output full

       commit information for each line, allowing simpler (but less efficient) usage like:

           # count the number of lines attributed to each author

           git blame --line-porcelain file |

           sed -n 's/^author //p' |

           sort | uniq -c | sort -rn

SPECIFYING RANGES

       Unlike git blame and git annotate in older versions of git, the extent of the annotation

       can be limited to both line ranges and revision ranges. The -L option, which limits

       annotation to a range of lines, may be specified multiple times.

       When you are interested in finding the origin for lines 40-60 for file foo, you can use

       the -L option like so (they mean the same thing ? both ask for 21 lines starting at line

       40):

           git blame -L 40,60 foo

           git blame -L 40,+21 foo

       Also you can use a regular expression to specify the line range:

           git blame -L '/^sub hello {/,/^}$/' foo

       which limits the annotation to the body of the hello subroutine.

       When you are not interested in changes older than version v2.6.18, or changes older than 3

       weeks, you can use revision range specifiers similar to git rev-list:

           git blame v2.6.18.. -- foo

           git blame --since=3.weeks -- foo

       When revision range specifiers are used to limit the annotation, lines that have not

       changed since the range boundary (either the commit v2.6.18 or the most recent commit that

       is more than 3 weeks old in the above example) are blamed for that range boundary commit.

       A particularly useful way is to see if an added file has lines created by copy-and-paste Page 7/9



       from existing files. Sometimes this indicates that the developer was being sloppy and did

       not refactor the code properly. You can first find the commit that introduced the file

       with:

           git log --diff-filter=A --pretty=short -- foo

       and then annotate the change between the commit and its parents, using commit^! notation:

           git blame -C -C -f $commit^! -- foo

INCREMENTAL OUTPUT

       When called with --incremental option, the command outputs the result as it is built. The

       output generally will talk about lines touched by more recent commits first (i.e. the

       lines will be annotated out of order) and is meant to be used by interactive viewers.

       The output format is similar to the Porcelain format, but it does not contain the actual

       lines from the file that is being annotated.

        1. Each blame entry always starts with a line of:

               <40-byte hex sha1> <sourceline> <resultline> <num_lines>

           Line numbers count from 1.

        2. The first time that a commit shows up in the stream, it has various other information

           about it printed out with a one-word tag at the beginning of each line describing the

           extra commit information (author, email, committer, dates, summary, etc.).

        3. Unlike the Porcelain format, the filename information is always given and terminates

           the entry:

               "filename" <whitespace-quoted-filename-goes-here>

           and thus it is really quite easy to parse for some line- and word-oriented parser

           (which should be quite natural for most scripting languages).

               Note

               For people who do parsing: to make it more robust, just ignore any lines between

               the first and last one ("<sha1>" and "filename" lines) where you do not recognize

               the tag words (or care about that particular one) at the beginning of the

               "extended information" lines. That way, if there is ever added information (like

               the commit encoding or extended commit commentary), a blame viewer will not care.

MAPPING AUTHORS

       See gitmailmap(5).

SEE ALSO

       git-annotate(1) Page 8/9



GIT

       Part of the git(1) suite

Git 2.34.1                                  07/07/2023                               GIT-BLAME(1)

Page 9/9


