
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-checkout.1'

$ man git-checkout.1

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

NAME

 git-checkout - Switch branches or restore working tree files

SYNOPSIS

 git checkout [-q] [-f] [-m] [<branch>]

 git checkout [-q] [-f] [-m] --detach [<branch>]

 git checkout [-q] [-f] [-m] [--detach] <commit>

 git checkout [-q] [-f] [-m] [[-b|-B|--orphan] <new_branch>] [<start_point>]

 git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] [--] <pathspec>...

 git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] --pathspec-from-file=<file> [--pathspec-file-nul]

 git checkout (-p|--patch) [<tree-ish>] [--] [<pathspec>...]

DESCRIPTION

 Updates files in the working tree to match the version in the index or the specified tree.

 If no pathspec was given, git checkout will also update HEAD to set the specified branch

 as the current branch.

 git checkout [<branch>]

 To prepare for working on <branch>, switch to it by updating the index and the files

 in the working tree, and by pointing HEAD at the branch. Local modifications to the

 files in the working tree are kept, so that they can be committed to the <branch>.

 If <branch> is not found but there does exist a tracking branch in exactly one remote

 (call it <remote>) with a matching name and --no-guess is not specified, treat as

 equivalent to

 $ git checkout -b <branch> --track <remote>/<branch> Page 1/12

 You could omit <branch>, in which case the command degenerates to "check out the

 current branch", which is a glorified no-op with rather expensive side-effects to show

 only the tracking information, if exists, for the current branch.

 git checkout -b|-B <new_branch> [<start point>]

 Specifying -b causes a new branch to be created as if git-branch(1) were called and

 then checked out. In this case you can use the --track or --no-track options, which

 will be passed to git branch. As a convenience, --track without -b implies branch

 creation; see the description of --track below.

 If -B is given, <new_branch> is created if it doesn?t exist; otherwise, it is reset.

 This is the transactional equivalent of

 $ git branch -f <branch> [<start point>]

 $ git checkout <branch>

 that is to say, the branch is not reset/created unless "git checkout" is successful.

 git checkout --detach [<branch>], git checkout [--detach] <commit>

 Prepare to work on top of <commit>, by detaching HEAD at it (see "DETACHED HEAD"

 section), and updating the index and the files in the working tree. Local

 modifications to the files in the working tree are kept, so that the resulting working

 tree will be the state recorded in the commit plus the local modifications.

 When the <commit> argument is a branch name, the --detach option can be used to detach

 HEAD at the tip of the branch (git checkout <branch> would check out that branch

 without detaching HEAD).

 Omitting <branch> detaches HEAD at the tip of the current branch.

 git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] [--] <pathspec>...,

 git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>]

 --pathspec-from-file=<file> [--pathspec-file-nul]

 Overwrite the contents of the files that match the pathspec. When the <tree-ish> (most

 often a commit) is not given, overwrite working tree with the contents in the index.

 When the <tree-ish> is given, overwrite both the index and the working tree with the

 contents at the <tree-ish>.

 The index may contain unmerged entries because of a previous failed merge. By default,

 if you try to check out such an entry from the index, the checkout operation will fail

 and nothing will be checked out. Using -f will ignore these unmerged entries. The

 contents from a specific side of the merge can be checked out of the index by using Page 2/12

 --ours or --theirs. With -m, changes made to the working tree file can be discarded to

 re-create the original conflicted merge result.

 git checkout (-p|--patch) [<tree-ish>] [--] [<pathspec>...]

 This is similar to the previous mode, but lets you use the interactive interface to

 show the "diff" output and choose which hunks to use in the result. See below for the

 description of --patch option.

OPTIONS

 -q, --quiet

 Quiet, suppress feedback messages.

 --progress, --no-progress

 Progress status is reported on the standard error stream by default when it is

 attached to a terminal, unless --quiet is specified. This flag enables progress

 reporting even if not attached to a terminal, regardless of --quiet.

 -f, --force

 When switching branches, proceed even if the index or the working tree differs from

 HEAD, and even if there are untracked files in the way. This is used to throw away

 local changes and any untracked files or directories that are in the way.

 When checking out paths from the index, do not fail upon unmerged entries; instead,

 unmerged entries are ignored.

 --ours, --theirs

 When checking out paths from the index, check out stage #2 (ours) or #3 (theirs) for

 unmerged paths.

 Note that during git rebase and git pull --rebase, ours and theirs may appear swapped;

 --ours gives the version from the branch the changes are rebased onto, while --theirs

 gives the version from the branch that holds your work that is being rebased.

 This is because rebase is used in a workflow that treats the history at the remote as

 the shared canonical one, and treats the work done on the branch you are rebasing as

 the third-party work to be integrated, and you are temporarily assuming the role of

 the keeper of the canonical history during the rebase. As the keeper of the canonical

 history, you need to view the history from the remote as ours (i.e. "our shared

 canonical history"), while what you did on your side branch as theirs (i.e. "one

 contributor?s work on top of it").

 -b <new_branch> Page 3/12

 Create a new branch named <new_branch> and start it at <start_point>; see git-

 branch(1) for details.

 -B <new_branch>

 Creates the branch <new_branch> and start it at <start_point>; if it already exists,

 then reset it to <start_point>. This is equivalent to running "git branch" with "-f";

 see git-branch(1) for details.

 -t, --track

 When creating a new branch, set up "upstream" configuration. See "--track" in git-

 branch(1) for details.

 If no -b option is given, the name of the new branch will be derived from the

 remote-tracking branch, by looking at the local part of the refspec configured for the

 corresponding remote, and then stripping the initial part up to the "*". This would

 tell us to use hack as the local branch when branching off of origin/hack (or

 remotes/origin/hack, or even refs/remotes/origin/hack). If the given name has no

 slash, or the above guessing results in an empty name, the guessing is aborted. You

 can explicitly give a name with -b in such a case.

 --no-track

 Do not set up "upstream" configuration, even if the branch.autoSetupMerge

 configuration variable is true.

 --guess, --no-guess

 If <branch> is not found but there does exist a tracking branch in exactly one remote

 (call it <remote>) with a matching name, treat as equivalent to

 $ git checkout -b <branch> --track <remote>/<branch>

 If the branch exists in multiple remotes and one of them is named by the

 checkout.defaultRemote configuration variable, we?ll use that one for the purposes of

 disambiguation, even if the <branch> isn?t unique across all remotes. Set it to e.g.

 checkout.defaultRemote=origin to always checkout remote branches from there if

 <branch> is ambiguous but exists on the origin remote. See also checkout.defaultRemote

 in git-config(1).

 --guess is the default behavior. Use --no-guess to disable it.

 The default behavior can be set via the checkout.guess configuration variable.

 -l

 Create the new branch?s reflog; see git-branch(1) for details. Page 4/12

 -d, --detach

 Rather than checking out a branch to work on it, check out a commit for inspection and

 discardable experiments. This is the default behavior of git checkout <commit> when

 <commit> is not a branch name. See the "DETACHED HEAD" section below for details.

 --orphan <new_branch>

 Create a new orphan branch, named <new_branch>, started from <start_point> and switch

 to it. The first commit made on this new branch will have no parents and it will be

 the root of a new history totally disconnected from all the other branches and

 commits.

 The index and the working tree are adjusted as if you had previously run git checkout

 <start_point>. This allows you to start a new history that records a set of paths

 similar to <start_point> by easily running git commit -a to make the root commit.

 This can be useful when you want to publish the tree from a commit without exposing

 its full history. You might want to do this to publish an open source branch of a

 project whose current tree is "clean", but whose full history contains proprietary or

 otherwise encumbered bits of code.

 If you want to start a disconnected history that records a set of paths that is

 totally different from the one of <start_point>, then you should clear the index and

 the working tree right after creating the orphan branch by running git rm -rf . from

 the top level of the working tree. Afterwards you will be ready to prepare your new

 files, repopulating the working tree, by copying them from elsewhere, extracting a

 tarball, etc.

 --ignore-skip-worktree-bits

 In sparse checkout mode, git checkout -- <paths> would update only entries matched by

 <paths> and sparse patterns in $GIT_DIR/info/sparse-checkout. This option ignores the

 sparse patterns and adds back any files in <paths>.

 -m, --merge

 When switching branches, if you have local modifications to one or more files that are

 different between the current branch and the branch to which you are switching, the

 command refuses to switch branches in order to preserve your modifications in context.

 However, with this option, a three-way merge between the current branch, your working

 tree contents, and the new branch is done, and you will be on the new branch.

 When a merge conflict happens, the index entries for conflicting paths are left Page 5/12

 unmerged, and you need to resolve the conflicts and mark the resolved paths with git

 add (or git rm if the merge should result in deletion of the path).

 When checking out paths from the index, this option lets you recreate the conflicted

 merge in the specified paths.

 When switching branches with --merge, staged changes may be lost.

 --conflict=<style>

 The same as --merge option above, but changes the way the conflicting hunks are

 presented, overriding the merge.conflictStyle configuration variable. Possible values

 are "merge" (default) and "diff3" (in addition to what is shown by "merge" style,

 shows the original contents).

 -p, --patch

 Interactively select hunks in the difference between the <tree-ish> (or the index, if

 unspecified) and the working tree. The chosen hunks are then applied in reverse to the

 working tree (and if a <tree-ish> was specified, the index).

 This means that you can use git checkout -p to selectively discard edits from your

 current working tree. See the ?Interactive Mode? section of git-add(1) to learn how to

 operate the --patch mode.

 Note that this option uses the no overlay mode by default (see also --overlay), and

 currently doesn?t support overlay mode.

 --ignore-other-worktrees

 git checkout refuses when the wanted ref is already checked out by another worktree.

 This option makes it check the ref out anyway. In other words, the ref can be held by

 more than one worktree.

 --overwrite-ignore, --no-overwrite-ignore

 Silently overwrite ignored files when switching branches. This is the default

 behavior. Use --no-overwrite-ignore to abort the operation when the new branch

 contains ignored files.

 --recurse-submodules, --no-recurse-submodules

 Using --recurse-submodules will update the content of all active submodules according

 to the commit recorded in the superproject. If local modifications in a submodule

 would be overwritten the checkout will fail unless -f is used. If nothing (or

 --no-recurse-submodules) is used, submodules working trees will not be updated. Just

 like git-submodule(1), this will detach HEAD of the submodule. Page 6/12

 --overlay, --no-overlay

 In the default overlay mode, git checkout never removes files from the index or the

 working tree. When specifying --no-overlay, files that appear in the index and working

 tree, but not in <tree-ish> are removed, to make them match <tree-ish> exactly.

 --pathspec-from-file=<file>

 Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then

 standard input is used. Pathspec elements are separated by LF or CR/LF. Pathspec

 elements can be quoted as explained for the configuration variable core.quotePath (see

 git-config(1)). See also --pathspec-file-nul and global --literal-pathspecs.

 --pathspec-file-nul

 Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL

 character and all other characters are taken literally (including newlines and

 quotes).

 <branch>

 Branch to checkout; if it refers to a branch (i.e., a name that, when prepended with

 "refs/heads/", is a valid ref), then that branch is checked out. Otherwise, if it

 refers to a valid commit, your HEAD becomes "detached" and you are no longer on any

 branch (see below for details).

 You can use the @{-N} syntax to refer to the N-th last branch/commit checked out using

 "git checkout" operation. You may also specify - which is synonymous to @{-1}.

 As a special case, you may use A...B as a shortcut for the merge base of A and B if

 there is exactly one merge base. You can leave out at most one of A and B, in which

 case it defaults to HEAD.

 <new_branch>

 Name for the new branch.

 <start_point>

 The name of a commit at which to start the new branch; see git-branch(1) for details.

 Defaults to HEAD.

 As a special case, you may use "A...B" as a shortcut for the merge base of A and B if

 there is exactly one merge base. You can leave out at most one of A and B, in which

 case it defaults to HEAD.

 <tree-ish>

 Tree to checkout from (when paths are given). If not specified, the index will be Page 7/12

 used.

 As a special case, you may use "A...B" as a shortcut for the merge base of A and B if

 there is exactly one merge base. You can leave out at most one of A and B, in which

 case it defaults to HEAD.

 --

 Do not interpret any more arguments as options.

 <pathspec>...

 Limits the paths affected by the operation.

 For more details, see the pathspec entry in gitglossary(7).

DETACHED HEAD

 HEAD normally refers to a named branch (e.g. master). Meanwhile, each branch refers to a

 specific commit. Let?s look at a repo with three commits, one of them tagged, and with

 branch master checked out:

 HEAD (refers to branch 'master')

 |

 v

 a---b---c branch 'master' (refers to commit 'c')

 ^

 |

 tag 'v2.0' (refers to commit 'b')

 When a commit is created in this state, the branch is updated to refer to the new commit.

 Specifically, git commit creates a new commit d, whose parent is commit c, and then

 updates branch master to refer to new commit d. HEAD still refers to branch master and so

 indirectly now refers to commit d:

 $ edit; git add; git commit

 HEAD (refers to branch 'master')

 |

 v

 a---b---c---d branch 'master' (refers to commit 'd')

 ^

 |

 tag 'v2.0' (refers to commit 'b')

 It is sometimes useful to be able to checkout a commit that is not at the tip of any named Page 8/12

 branch, or even to create a new commit that is not referenced by a named branch. Let?s

 look at what happens when we checkout commit b (here we show two ways this may be done):

 $ git checkout v2.0 # or

 $ git checkout master^^

 HEAD (refers to commit 'b')

 |

 v

 a---b---c---d branch 'master' (refers to commit 'd')

 ^

 |

 tag 'v2.0' (refers to commit 'b')

 Notice that regardless of which checkout command we use, HEAD now refers directly to

 commit b. This is known as being in detached HEAD state. It means simply that HEAD refers

 to a specific commit, as opposed to referring to a named branch. Let?s see what happens

 when we create a commit:

 $ edit; git add; git commit

 HEAD (refers to commit 'e')

 |

 v

 e

 /

 a---b---c---d branch 'master' (refers to commit 'd')

 ^

 |

 tag 'v2.0' (refers to commit 'b')

 There is now a new commit e, but it is referenced only by HEAD. We can of course add yet

 another commit in this state:

 $ edit; git add; git commit

 HEAD (refers to commit 'f')

 |

 v

 e---f

 / Page 9/12

 a---b---c---d branch 'master' (refers to commit 'd')

 ^

 |

 tag 'v2.0' (refers to commit 'b')

 In fact, we can perform all the normal Git operations. But, let?s look at what happens

 when we then checkout master:

 $ git checkout master

 HEAD (refers to branch 'master')

 e---f |

 / v

 a---b---c---d branch 'master' (refers to commit 'd')

 ^

 |

 tag 'v2.0' (refers to commit 'b')

 It is important to realize that at this point nothing refers to commit f. Eventually

 commit f (and by extension commit e) will be deleted by the routine Git garbage collection

 process, unless we create a reference before that happens. If we have not yet moved away

 from commit f, any of these will create a reference to it:

 $ git checkout -b foo (1)

 $ git branch foo (2)

 $ git tag foo (3)

 1. creates a new branch foo, which refers to commit f, and then updates HEAD to refer to

 branch foo. In other words, we?ll no longer be in detached HEAD state after this command.

 2. similarly creates a new branch foo, which refers to commit f, but leaves HEAD detached.

 3. creates a new tag foo, which refers to commit f, leaving HEAD detached.

 If we have moved away from commit f, then we must first recover its object name (typically

 by using git reflog), and then we can create a reference to it. For example, to see the

 last two commits to which HEAD referred, we can use either of these commands:

 $ git reflog -2 HEAD # or

 $ git log -g -2 HEAD

ARGUMENT DISAMBIGUATION

 When there is only one argument given and it is not -- (e.g. git checkout abc), and when

 the argument is both a valid <tree-ish> (e.g. a branch abc exists) and a valid <pathspec> Page 10/12

 (e.g. a file or a directory whose name is "abc" exists), Git would usually ask you to

 disambiguate. Because checking out a branch is so common an operation, however, git

 checkout abc takes "abc" as a <tree-ish> in such a situation. Use git checkout --

 <pathspec> if you want to checkout these paths out of the index.

EXAMPLES

 1. The following sequence checks out the master branch, reverts the Makefile to two

 revisions back, deletes hello.c by mistake, and gets it back from the index.

 $ git checkout master (1)

 $ git checkout master~2 Makefile (2)

 $ rm -f hello.c

 $ git checkout hello.c (3)

 1. switch branch

 2. take a file out of another commit

 3. restore hello.c from the index

 If you want to check out all C source files out of the index, you can say

 $ git checkout -- '*.c'

 Note the quotes around *.c. The file hello.c will also be checked out, even though it

 is no longer in the working tree, because the file globbing is used to match entries

 in the index (not in the working tree by the shell).

 If you have an unfortunate branch that is named hello.c, this step would be confused

 as an instruction to switch to that branch. You should instead write:

 $ git checkout -- hello.c

 2. After working in the wrong branch, switching to the correct branch would be done

 using:

 $ git checkout mytopic

 However, your "wrong" branch and correct mytopic branch may differ in files that you

 have modified locally, in which case the above checkout would fail like this:

 $ git checkout mytopic

 error: You have local changes to 'frotz'; not switching branches.

 You can give the -m flag to the command, which would try a three-way merge:

 $ git checkout -m mytopic

 Auto-merging frotz

 After this three-way merge, the local modifications are not registered in your index Page 11/12

 file, so git diff would show you what changes you made since the tip of the new

 branch.

 3. When a merge conflict happens during switching branches with the -m option, you would

 see something like this:

 $ git checkout -m mytopic

 Auto-merging frotz

 ERROR: Merge conflict in frotz

 fatal: merge program failed

 At this point, git diff shows the changes cleanly merged as in the previous example,

 as well as the changes in the conflicted files. Edit and resolve the conflict and mark

 it resolved with git add as usual:

 $ edit frotz

 $ git add frotz

SEE ALSO

 git-switch(1), git-restore(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-CHECKOUT(1)

Page 12/12

