
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-cherry-pick.1'

$ man git-cherry-pick.1

GIT-CHERRY-PICK(1) Git Manual GIT-CHERRY-PICK(1)

NAME

 git-cherry-pick - Apply the changes introduced by some existing commits

SYNOPSIS

 git cherry-pick [--edit] [-n] [-m parent-number] [-s] [-x] [--ff]

 [-S[<keyid>]] <commit>...

 git cherry-pick (--continue | --skip | --abort | --quit)

DESCRIPTION

 Given one or more existing commits, apply the change each one introduces, recording a new

 commit for each. This requires your working tree to be clean (no modifications from the

 HEAD commit).

 When it is not obvious how to apply a change, the following happens:

 1. The current branch and HEAD pointer stay at the last commit successfully made.

 2. The CHERRY_PICK_HEAD ref is set to point at the commit that introduced the change that

 is difficult to apply.

 3. Paths in which the change applied cleanly are updated both in the index file and in

 your working tree.

 4. For conflicting paths, the index file records up to three versions, as described in

 the "TRUE MERGE" section of git-merge(1). The working tree files will include a

 description of the conflict bracketed by the usual conflict markers <<<<<<< and

 >>>>>>>.

 5. No other modifications are made.

 See git-merge(1) for some hints on resolving such conflicts. Page 1/6

OPTIONS

 <commit>...

 Commits to cherry-pick. For a more complete list of ways to spell commits, see

 gitrevisions(7). Sets of commits can be passed but no traversal is done by default, as

 if the --no-walk option was specified, see git-rev-list(1). Note that specifying a

 range will feed all <commit>... arguments to a single revision walk (see a later

 example that uses maint master..next).

 -e, --edit

 With this option, git cherry-pick will let you edit the commit message prior to

 committing.

 --cleanup=<mode>

 This option determines how the commit message will be cleaned up before being passed

 on to the commit machinery. See git-commit(1) for more details. In particular, if the

 <mode> is given a value of scissors, scissors will be appended to MERGE_MSG before

 being passed on in the case of a conflict.

 -x

 When recording the commit, append a line that says "(cherry picked from commit ...)"

 to the original commit message in order to indicate which commit this change was

 cherry-picked from. This is done only for cherry picks without conflicts. Do not use

 this option if you are cherry-picking from your private branch because the information

 is useless to the recipient. If on the other hand you are cherry-picking between two

 publicly visible branches (e.g. backporting a fix to a maintenance branch for an older

 release from a development branch), adding this information can be useful.

 -r

 It used to be that the command defaulted to do -x described above, and -r was to

 disable it. Now the default is not to do -x so this option is a no-op.

 -m parent-number, --mainline parent-number

 Usually you cannot cherry-pick a merge because you do not know which side of the merge

 should be considered the mainline. This option specifies the parent number (starting

 from 1) of the mainline and allows cherry-pick to replay the change relative to the

 specified parent.

 -n, --no-commit

 Usually the command automatically creates a sequence of commits. This flag applies the Page 2/6

 changes necessary to cherry-pick each named commit to your working tree and the index,

 without making any commit. In addition, when this option is used, your index does not

 have to match the HEAD commit. The cherry-pick is done against the beginning state of

 your index.

 This is useful when cherry-picking more than one commits' effect to your index in a

 row.

 -s, --signoff

 Add a Signed-off-by trailer at the end of the commit message. See the signoff option

 in git-commit(1) for more information.

 -S[<keyid>], --gpg-sign[=<keyid>], --no-gpg-sign

 GPG-sign commits. The keyid argument is optional and defaults to the committer

 identity; if specified, it must be stuck to the option without a space. --no-gpg-sign

 is useful to countermand both commit.gpgSign configuration variable, and earlier

 --gpg-sign.

 --ff

 If the current HEAD is the same as the parent of the cherry-pick?ed commit, then a

 fast forward to this commit will be performed.

 --allow-empty

 By default, cherry-picking an empty commit will fail, indicating that an explicit

 invocation of git commit --allow-empty is required. This option overrides that

 behavior, allowing empty commits to be preserved automatically in a cherry-pick. Note

 that when "--ff" is in effect, empty commits that meet the "fast-forward" requirement

 will be kept even without this option. Note also, that use of this option only keeps

 commits that were initially empty (i.e. the commit recorded the same tree as its

 parent). Commits which are made empty due to a previous commit are dropped. To force

 the inclusion of those commits use --keep-redundant-commits.

 --allow-empty-message

 By default, cherry-picking a commit with an empty message will fail. This option

 overrides that behavior, allowing commits with empty messages to be cherry picked.

 --keep-redundant-commits

 If a commit being cherry picked duplicates a commit already in the current history, it

 will become empty. By default these redundant commits cause cherry-pick to stop so the

 user can examine the commit. This option overrides that behavior and creates an empty Page 3/6

 commit object. Implies --allow-empty.

 --strategy=<strategy>

 Use the given merge strategy. Should only be used once. See the MERGE STRATEGIES

 section in git-merge(1) for details.

 -X<option>, --strategy-option=<option>

 Pass the merge strategy-specific option through to the merge strategy. See git-

 merge(1) for details.

 --rerere-autoupdate, --no-rerere-autoupdate

 Allow the rerere mechanism to update the index with the result of auto-conflict

 resolution if possible.

SEQUENCER SUBCOMMANDS

 --continue

 Continue the operation in progress using the information in .git/sequencer. Can be

 used to continue after resolving conflicts in a failed cherry-pick or revert.

 --skip

 Skip the current commit and continue with the rest of the sequence.

 --quit

 Forget about the current operation in progress. Can be used to clear the sequencer

 state after a failed cherry-pick or revert.

 --abort

 Cancel the operation and return to the pre-sequence state.

EXAMPLES

 git cherry-pick master

 Apply the change introduced by the commit at the tip of the master branch and create a

 new commit with this change.

 git cherry-pick ..master, git cherry-pick ^HEAD master

 Apply the changes introduced by all commits that are ancestors of master but not of

 HEAD to produce new commits.

 git cherry-pick maint next ^master, git cherry-pick maint master..next

 Apply the changes introduced by all commits that are ancestors of maint or next, but

 not master or any of its ancestors. Note that the latter does not mean maint and

 everything between master and next; specifically, maint will not be used if it is

 included in master. Page 4/6

 git cherry-pick master~4 master~2

 Apply the changes introduced by the fifth and third last commits pointed to by master

 and create 2 new commits with these changes.

 git cherry-pick -n master~1 next

 Apply to the working tree and the index the changes introduced by the second last

 commit pointed to by master and by the last commit pointed to by next, but do not

 create any commit with these changes.

 git cherry-pick --ff ..next

 If history is linear and HEAD is an ancestor of next, update the working tree and

 advance the HEAD pointer to match next. Otherwise, apply the changes introduced by

 those commits that are in next but not HEAD to the current branch, creating a new

 commit for each new change.

 git rev-list --reverse master -- README | git cherry-pick -n --stdin

 Apply the changes introduced by all commits on the master branch that touched README

 to the working tree and index, so the result can be inspected and made into a single

 new commit if suitable.

 The following sequence attempts to backport a patch, bails out because the code the patch

 applies to has changed too much, and then tries again, this time exercising more care

 about matching up context lines.

 $ git cherry-pick topic^ (1)

 $ git diff (2)

 $ git reset --merge ORIG_HEAD (3)

 $ git cherry-pick -Xpatience topic^ (4)

 1. apply the change that would be shown by git show topic^. In this example, the patch

 does not apply cleanly, so information about the conflict is written to the index and

 working tree and no new commit results.

 2. summarize changes to be reconciled

 3. cancel the cherry-pick. In other words, return to the pre-cherry-pick state, preserving

 any local modifications you had in the working tree.

 4. try to apply the change introduced by topic^ again, spending extra time to avoid

 mistakes based on incorrectly matching context lines.

SEE ALSO

 git-revert(1) Page 5/6

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-CHERRY-PICK(1)

Page 6/6

