
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-for-each-ref.1'

$ man git-for-each-ref.1

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

NAME

 git-for-each-ref - Output information on each ref

SYNOPSIS

 git for-each-ref [--count=<count>] [--shell|--perl|--python|--tcl]

 [(--sort=<key>)...] [--format=<format>] [<pattern>...]

 [--points-at=<object>]

 [--merged[=<object>]] [--no-merged[=<object>]]

 [--contains[=<object>]] [--no-contains[=<object>]]

DESCRIPTION

 Iterate over all refs that match <pattern> and show them according to the given <format>,

 after sorting them according to the given set of <key>. If <count> is given, stop after

 showing that many refs. The interpolated values in <format> can optionally be quoted as

 string literals in the specified host language allowing their direct evaluation in that

 language.

OPTIONS

 <pattern>...

 If one or more patterns are given, only refs are shown that match against at least one

 pattern, either using fnmatch(3) or literally, in the latter case matching completely

 or from the beginning up to a slash.

 --count=<count>

 By default the command shows all refs that match <pattern>. This option makes it stop

 after showing that many refs. Page 1/9

 --sort=<key>

 A field name to sort on. Prefix - to sort in descending order of the value. When

 unspecified, refname is used. You may use the --sort=<key> option multiple times, in

 which case the last key becomes the primary key.

 --format=<format>

 A string that interpolates %(fieldname) from a ref being shown and the object it

 points at. If fieldname is prefixed with an asterisk (*) and the ref points at a tag

 object, use the value for the field in the object which the tag object refers to

 (instead of the field in the tag object). When unspecified, <format> defaults to

 %(objectname) SPC %(objecttype) TAB %(refname). It also interpolates %% to %, and %xx

 where xx are hex digits interpolates to character with hex code xx; for example %00

 interpolates to \0 (NUL), %09 to \t (TAB) and %0a to \n (LF).

 --color[=<when>]

 Respect any colors specified in the --format option. The <when> field must be one of

 always, never, or auto (if <when> is absent, behave as if always was given).

 --shell, --perl, --python, --tcl

 If given, strings that substitute %(fieldname) placeholders are quoted as string

 literals suitable for the specified host language. This is meant to produce a

 scriptlet that can directly be `eval`ed.

 --points-at=<object>

 Only list refs which points at the given object.

 --merged[=<object>]

 Only list refs whose tips are reachable from the specified commit (HEAD if not

 specified).

 --no-merged[=<object>]

 Only list refs whose tips are not reachable from the specified commit (HEAD if not

 specified).

 --contains[=<object>]

 Only list refs which contain the specified commit (HEAD if not specified).

 --no-contains[=<object>]

 Only list refs which don?t contain the specified commit (HEAD if not specified).

 --ignore-case

 Sorting and filtering refs are case insensitive. Page 2/9

FIELD NAMES

 Various values from structured fields in referenced objects can be used to interpolate

 into the resulting output, or as sort keys.

 For all objects, the following names can be used:

 refname

 The name of the ref (the part after $GIT_DIR/). For a non-ambiguous short name of the

 ref append :short. The option core.warnAmbiguousRefs is used to select the strict

 abbreviation mode. If lstrip=<N> (rstrip=<N>) is appended, strips <N> slash-separated

 path components from the front (back) of the refname (e.g. %(refname:lstrip=2) turns

 refs/tags/foo into foo and %(refname:rstrip=2) turns refs/tags/foo into refs). If <N>

 is a negative number, strip as many path components as necessary from the specified

 end to leave -<N> path components (e.g. %(refname:lstrip=-2) turns refs/tags/foo into

 tags/foo and %(refname:rstrip=-1) turns refs/tags/foo into refs). When the ref does

 not have enough components, the result becomes an empty string if stripping with

 positive <N>, or it becomes the full refname if stripping with negative <N>. Neither

 is an error.

 strip can be used as a synonym to lstrip.

 objecttype

 The type of the object (blob, tree, commit, tag).

 objectsize

 The size of the object (the same as git cat-file -s reports). Append :disk to get the

 size, in bytes, that the object takes up on disk. See the note about on-disk sizes in

 the CAVEATS section below.

 objectname

 The object name (aka SHA-1). For a non-ambiguous abbreviation of the object name

 append :short. For an abbreviation of the object name with desired length append

 :short=<length>, where the minimum length is MINIMUM_ABBREV. The length may be

 exceeded to ensure unique object names.

 deltabase

 This expands to the object name of the delta base for the given object, if it is

 stored as a delta. Otherwise it expands to the null object name (all zeroes).

 upstream

 The name of a local ref which can be considered ?upstream? from the displayed ref. Page 3/9

 Respects :short, :lstrip and :rstrip in the same way as refname above. Additionally

 respects :track to show "[ahead N, behind M]" and :trackshort to show the terse

 version: ">" (ahead), "<" (behind), "<>" (ahead and behind), or "=" (in sync). :track

 also prints "[gone]" whenever unknown upstream ref is encountered. Append

 :track,nobracket to show tracking information without brackets (i.e "ahead N, behind

 M").

 For any remote-tracking branch %(upstream), %(upstream:remotename) and

 %(upstream:remoteref) refer to the name of the remote and the name of the tracked

 remote ref, respectively. In other words, the remote-tracking branch can be updated

 explicitly and individually by using the refspec %(upstream:remoteref):%(upstream) to

 fetch from %(upstream:remotename).

 Has no effect if the ref does not have tracking information associated with it. All

 the options apart from nobracket are mutually exclusive, but if used together the last

 option is selected.

 push

 The name of a local ref which represents the @{push} location for the displayed ref.

 Respects :short, :lstrip, :rstrip, :track, :trackshort, :remotename, and :remoteref

 options as upstream does. Produces an empty string if no @{push} ref is configured.

 HEAD

 * if HEAD matches current ref (the checked out branch), ' ' otherwise.

 color

 Change output color. Followed by :<colorname>, where color names are described under

 Values in the "CONFIGURATION FILE" section of git-config(1). For example, %(color:bold

 red).

 align

 Left-, middle-, or right-align the content between %(align:...) and %(end). The

 "align:" is followed by width=<width> and position=<position> in any order separated

 by a comma, where the <position> is either left, right or middle, default being left

 and <width> is the total length of the content with alignment. For brevity, the

 "width=" and/or "position=" prefixes may be omitted, and bare <width> and <position>

 used instead. For instance, %(align:<width>,<position>). If the contents length is

 more than the width then no alignment is performed. If used with --quote everything in

 between %(align:...) and %(end) is quoted, but if nested then only the topmost level Page 4/9

 performs quoting.

 if

 Used as %(if)...%(then)...%(end) or %(if)...%(then)...%(else)...%(end). If there is an

 atom with value or string literal after the %(if) then everything after the %(then) is

 printed, else if the %(else) atom is used, then everything after %(else) is printed.

 We ignore space when evaluating the string before %(then), this is useful when we use

 the %(HEAD) atom which prints either "*" or " " and we want to apply the if condition

 only on the HEAD ref. Append ":equals=<string>" or ":notequals=<string>" to compare

 the value between the %(if:...) and %(then) atoms with the given string.

 symref

 The ref which the given symbolic ref refers to. If not a symbolic ref, nothing is

 printed. Respects the :short, :lstrip and :rstrip options in the same way as refname

 above.

 worktreepath

 The absolute path to the worktree in which the ref is checked out, if it is checked

 out in any linked worktree. Empty string otherwise.

 In addition to the above, for commit and tag objects, the header field names (tree,

 parent, object, type, and tag) can be used to specify the value in the header field.

 Fields tree and parent can also be used with modifier :short and :short=<length> just like

 objectname.

 For commit and tag objects, the special creatordate and creator fields will correspond to

 the appropriate date or name-email-date tuple from the committer or tagger fields

 depending on the object type. These are intended for working on a mix of annotated and

 lightweight tags.

 Fields that have name-email-date tuple as its value (author, committer, and tagger) can be

 suffixed with name, email, and date to extract the named component. For email fields

 (authoremail, committeremail and taggeremail), :trim can be appended to get the email

 without angle brackets, and :localpart to get the part before the @ symbol out of the

 trimmed email.

 The raw data in an object is raw.

 raw:size

 The raw data size of the object.

 Note that --format=%(raw) can not be used with --python, --shell, --tcl, because such Page 5/9

 language may not support arbitrary binary data in their string variable type.

 The message in a commit or a tag object is contents, from which contents:<part> can be

 used to extract various parts out of:

 contents:size

 The size in bytes of the commit or tag message.

 contents:subject

 The first paragraph of the message, which typically is a single line, is taken as the

 "subject" of the commit or the tag message. Instead of contents:subject, field subject

 can also be used to obtain same results. :sanitize can be appended to subject for

 subject line suitable for filename.

 contents:body

 The remainder of the commit or the tag message that follows the "subject".

 contents:signature

 The optional GPG signature of the tag.

 contents:lines=N

 The first N lines of the message.

 Additionally, the trailers as interpreted by git-interpret-trailers(1) are obtained as

 trailers[:options] (or by using the historical alias contents:trailers[:options]). For

 valid [:option] values see trailers section of git-log(1).

 For sorting purposes, fields with numeric values sort in numeric order (objectsize,

 authordate, committerdate, creatordate, taggerdate). All other fields are used to sort in

 their byte-value order.

 There is also an option to sort by versions, this can be done by using the fieldname

 version:refname or its alias v:refname.

 In any case, a field name that refers to a field inapplicable to the object referred by

 the ref does not cause an error. It returns an empty string instead.

 As a special case for the date-type fields, you may specify a format for the date by

 adding : followed by date format name (see the values the --date option to git-rev-list(1)

 takes).

 Some atoms like %(align) and %(if) always require a matching %(end). We call them "opening

 atoms" and sometimes denote them as %($open).

 When a scripting language specific quoting is in effect, everything between a top-level

 opening atom and its matching %(end) is evaluated according to the semantics of the Page 6/9

 opening atom and only its result from the top-level is quoted.

EXAMPLES

 An example directly producing formatted text. Show the most recent 3 tagged commits:

 #!/bin/sh

 git for-each-ref --count=3 --sort='-*authordate' \

 --format='From: %(*authorname) %(*authoremail)

 Subject: %(*subject)

 Date: %(*authordate)

 Ref: %(*refname)

 %(*body)

 ' 'refs/tags'

 A simple example showing the use of shell eval on the output, demonstrating the use of

 --shell. List the prefixes of all heads:

 #!/bin/sh

 git for-each-ref --shell --format="ref=%(refname)" refs/heads | \

 while read entry

 do

 eval "$entry"

 echo `dirname $ref`

 done

 A bit more elaborate report on tags, demonstrating that the format may be an entire

 script:

 #!/bin/sh

 fmt='

 r=%(refname)

 t=%(*objecttype)

 T=${r#refs/tags/}

 o=%(*objectname)

 n=%(*authorname)

 e=%(*authoremail)

 s=%(*subject)

 d=%(*authordate)

 b=%(*body) Page 7/9

 kind=Tag

 if test "z$t" = z

 then

 # could be a lightweight tag

 t=%(objecttype)

 kind="Lightweight tag"

 o=%(objectname)

 n=%(authorname)

 e=%(authoremail)

 s=%(subject)

 d=%(authordate)

 b=%(body)

 fi

 echo "$kind $T points at a $t object $o"

 if test "z$t" = zcommit

 then

 echo "The commit was authored by $n $e

 at $d, and titled

 $s

 Its message reads as:

 "

 echo "$b" | sed -e "s/^/ /"

 echo

 fi

 '

 eval=`git for-each-ref --shell --format="$fmt" \

 --sort='*objecttype' \

 --sort=-taggerdate \

 refs/tags`

 eval "$eval"

 An example to show the usage of %(if)...%(then)...%(else)...%(end). This prefixes the

 current branch with a star.

 git for-each-ref --format="%(if)%(HEAD)%(then)* %(else) %(end)%(refname:short)" refs/heads/ Page 8/9

 An example to show the usage of %(if)...%(then)...%(end). This prints the authorname, if

 present.

 git for-each-ref --format="%(refname)%(if)%(authorname)%(then) Authored by: %(authorname)%(end)"

CAVEATS

 Note that the sizes of objects on disk are reported accurately, but care should be taken

 in drawing conclusions about which refs or objects are responsible for disk usage. The

 size of a packed non-delta object may be much larger than the size of objects which delta

 against it, but the choice of which object is the base and which is the delta is arbitrary

 and is subject to change during a repack.

 Note also that multiple copies of an object may be present in the object database; in this

 case, it is undefined which copy?s size or delta base will be reported.

NOTES

 When combining multiple --contains and --no-contains filters, only references that contain

 at least one of the --contains commits and contain none of the --no-contains commits are

 shown.

 When combining multiple --merged and --no-merged filters, only references that are

 reachable from at least one of the --merged commits and from none of the --no-merged

 commits are shown.

SEE ALSO

 git-show-ref(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-FOR-EACH-REF(1)

Page 9/9

