
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-fsck.1'

$ man git-fsck.1

GIT-FSCK(1) Git Manual GIT-FSCK(1)

NAME

 git-fsck - Verifies the connectivity and validity of the objects in the database

SYNOPSIS

 git fsck [--tags] [--root] [--unreachable] [--cache] [--no-reflogs]

 [--[no-]full] [--strict] [--verbose] [--lost-found]

 [--[no-]dangling] [--[no-]progress] [--connectivity-only]

 [--[no-]name-objects] [<object>*]

DESCRIPTION

 Verifies the connectivity and validity of the objects in the database.

OPTIONS

 <object>

 An object to treat as the head of an unreachability trace.

 If no objects are given, git fsck defaults to using the index file, all SHA-1

 references in refs namespace, and all reflogs (unless --no-reflogs is given) as heads.

 --unreachable

 Print out objects that exist but that aren?t reachable from any of the reference

 nodes.

 --[no-]dangling

 Print objects that exist but that are never directly used (default). --no-dangling

 can be used to omit this information from the output.

 --root

 Report root nodes. Page 1/5

 --tags

 Report tags.

 --cache

 Consider any object recorded in the index also as a head node for an unreachability

 trace.

 --no-reflogs

 Do not consider commits that are referenced only by an entry in a reflog to be

 reachable. This option is meant only to search for commits that used to be in a ref,

 but now aren?t, but are still in that corresponding reflog.

 --full

 Check not just objects in GIT_OBJECT_DIRECTORY ($GIT_DIR/objects), but also the ones

 found in alternate object pools listed in GIT_ALTERNATE_OBJECT_DIRECTORIES or

 $GIT_DIR/objects/info/alternates, and in packed Git archives found in

 $GIT_DIR/objects/pack and corresponding pack subdirectories in alternate object pools.

 This is now default; you can turn it off with --no-full.

 --connectivity-only

 Check only the connectivity of reachable objects, making sure that any objects

 referenced by a reachable tag, commit, or tree is present. This speeds up the

 operation by avoiding reading blobs entirely (though it does still check that

 referenced blobs exist). This will detect corruption in commits and trees, but not do

 any semantic checks (e.g., for format errors). Corruption in blob objects will not be

 detected at all.

 Unreachable tags, commits, and trees will also be accessed to find the tips of

 dangling segments of history. Use --no-dangling if you don?t care about this output

 and want to speed it up further.

 --strict

 Enable more strict checking, namely to catch a file mode recorded with g+w bit set,

 which was created by older versions of Git. Existing repositories, including the Linux

 kernel, Git itself, and sparse repository have old objects that triggers this check,

 but it is recommended to check new projects with this flag.

 --verbose

 Be chatty.

 --lost-found Page 2/5

 Write dangling objects into .git/lost-found/commit/ or .git/lost-found/other/,

 depending on type. If the object is a blob, the contents are written into the file,

 rather than its object name.

 --name-objects

 When displaying names of reachable objects, in addition to the SHA-1 also display a

 name that describes how they are reachable, compatible with git-rev-parse(1), e.g.

 HEAD@{1234567890}~25^2:src/.

 --[no-]progress

 Progress status is reported on the standard error stream by default when it is

 attached to a terminal, unless --no-progress or --verbose is specified. --progress

 forces progress status even if the standard error stream is not directed to a

 terminal.

CONFIGURATION

 fsck.<msg-id>

 During fsck git may find issues with legacy data which wouldn?t be generated by

 current versions of git, and which wouldn?t be sent over the wire if

 transfer.fsckObjects was set. This feature is intended to support working with legacy

 repositories containing such data.

 Setting fsck.<msg-id> will be picked up by git-fsck(1), but to accept pushes of such

 data set receive.fsck.<msg-id> instead, or to clone or fetch it set

 fetch.fsck.<msg-id>.

 The rest of the documentation discusses fsck.* for brevity, but the same applies for

 the corresponding receive.fsck.* and fetch.<msg-id>.*. variables.

 Unlike variables like color.ui and core.editor the receive.fsck.<msg-id> and

 fetch.fsck.<msg-id> variables will not fall back on the fsck.<msg-id> configuration if

 they aren?t set. To uniformly configure the same fsck settings in different

 circumstances all three of them they must all set to the same values.

 When fsck.<msg-id> is set, errors can be switched to warnings and vice versa by

 configuring the fsck.<msg-id> setting where the <msg-id> is the fsck message ID and

 the value is one of error, warn or ignore. For convenience, fsck prefixes the

 error/warning with the message ID, e.g. "missingEmail: invalid author/committer line -

 missing email" means that setting fsck.missingEmail = ignore will hide that issue.

 In general, it is better to enumerate existing objects with problems with Page 3/5

 fsck.skipList, instead of listing the kind of breakages these problematic objects

 share to be ignored, as doing the latter will allow new instances of the same

 breakages go unnoticed.

 Setting an unknown fsck.<msg-id> value will cause fsck to die, but doing the same for

 receive.fsck.<msg-id> and fetch.fsck.<msg-id> will only cause git to warn.

 fsck.skipList

 The path to a list of object names (i.e. one unabbreviated SHA-1 per line) that are

 known to be broken in a non-fatal way and should be ignored. On versions of Git 2.20

 and later comments (#), empty lines, and any leading and trailing whitespace is

 ignored. Everything but a SHA-1 per line will error out on older versions.

 This feature is useful when an established project should be accepted despite early

 commits containing errors that can be safely ignored such as invalid committer email

 addresses. Note: corrupt objects cannot be skipped with this setting.

 Like fsck.<msg-id> this variable has corresponding receive.fsck.skipList and

 fetch.fsck.skipList variants.

 Unlike variables like color.ui and core.editor the receive.fsck.skipList and

 fetch.fsck.skipList variables will not fall back on the fsck.skipList configuration if

 they aren?t set. To uniformly configure the same fsck settings in different

 circumstances all three of them they must all set to the same values.

 Older versions of Git (before 2.20) documented that the object names list should be

 sorted. This was never a requirement, the object names could appear in any order, but

 when reading the list we tracked whether the list was sorted for the purposes of an

 internal binary search implementation, which could save itself some work with an

 already sorted list. Unless you had a humongous list there was no reason to go out of

 your way to pre-sort the list. After Git version 2.20 a hash implementation is used

 instead, so there?s now no reason to pre-sort the list.

DISCUSSION

 git-fsck tests SHA-1 and general object sanity, and it does full tracking of the resulting

 reachability and everything else. It prints out any corruption it finds (missing or bad

 objects), and if you use the --unreachable flag it will also print out objects that exist

 but that aren?t reachable from any of the specified head nodes (or the default set, as

 mentioned above).

 Any corrupt objects you will have to find in backups or other archives (i.e., you can just Page 4/5

 remove them and do an rsync with some other site in the hopes that somebody else has the

 object you have corrupted).

 If core.commitGraph is true, the commit-graph file will also be inspected using git

 commit-graph verify. See git-commit-graph(1).

EXTRACTED DIAGNOSTICS

 unreachable <type> <object>

 The <type> object <object>, isn?t actually referred to directly or indirectly in any

 of the trees or commits seen. This can mean that there?s another root node that you?re

 not specifying or that the tree is corrupt. If you haven?t missed a root node then you

 might as well delete unreachable nodes since they can?t be used.

 missing <type> <object>

 The <type> object <object>, is referred to but isn?t present in the database.

 dangling <type> <object>

 The <type> object <object>, is present in the database but never directly used. A

 dangling commit could be a root node.

 hash mismatch <object>

 The database has an object whose hash doesn?t match the object database value. This

 indicates a serious data integrity problem.

ENVIRONMENT VARIABLES

 GIT_OBJECT_DIRECTORY

 used to specify the object database root (usually $GIT_DIR/objects)

 GIT_INDEX_FILE

 used to specify the index file of the index

 GIT_ALTERNATE_OBJECT_DIRECTORIES

 used to specify additional object database roots (usually unset)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-FSCK(1)

Page 5/5

