
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-maintenance.1'

$ man git-maintenance.1

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

NAME

 git-maintenance - Run tasks to optimize Git repository data

SYNOPSIS

 git maintenance run [<options>]

DESCRIPTION

 Run tasks to optimize Git repository data, speeding up other Git commands and reducing

 storage requirements for the repository.

 Git commands that add repository data, such as git add or git fetch, are optimized for a

 responsive user experience. These commands do not take time to optimize the Git data,

 since such optimizations scale with the full size of the repository while these user

 commands each perform a relatively small action.

 The git maintenance command provides flexibility for how to optimize the Git repository.

SUBCOMMANDS

 register

 Initialize Git config values so any scheduled maintenance will start running on this

 repository. This adds the repository to the maintenance.repo config variable in the

 current user?s global config and enables some recommended configuration values for

 maintenance.<task>.schedule. The tasks that are enabled are safe for running in the

 background without disrupting foreground processes.

 The register subcommand will also set the maintenance.strategy config value to

 incremental, if this value is not previously set. The incremental strategy uses the

 following schedule for each maintenance task: Page 1/9

 ? gc: disabled.

 ? commit-graph: hourly.

 ? prefetch: hourly.

 ? loose-objects: daily.

 ? incremental-repack: daily.

 git maintenance register will also disable foreground maintenance by setting

 maintenance.auto = false in the current repository. This config setting will remain

 after a git maintenance unregister command.

 run

 Run one or more maintenance tasks. If one or more --task options are specified, then

 those tasks are run in that order. Otherwise, the tasks are determined by which

 maintenance.<task>.enabled config options are true. By default, only

 maintenance.gc.enabled is true.

 start

 Start running maintenance on the current repository. This performs the same config

 updates as the register subcommand, then updates the background scheduler to run git

 maintenance run --scheduled on an hourly basis.

 stop

 Halt the background maintenance schedule. The current repository is not removed from

 the list of maintained repositories, in case the background maintenance is restarted

 later.

 unregister

 Remove the current repository from background maintenance. This only removes the

 repository from the configured list. It does not stop the background maintenance

 processes from running.

TASKS

 commit-graph

 The commit-graph job updates the commit-graph files incrementally, then verifies that

 the written data is correct. The incremental write is safe to run alongside concurrent

 Git processes since it will not expire .graph files that were in the previous

 commit-graph-chain file. They will be deleted by a later run based on the expiration

 delay.

 prefetch Page 2/9

 The prefetch task updates the object directory with the latest objects from all

 registered remotes. For each remote, a git fetch command is run. The configured

 refspec is modified to place all requested refs within refs/prefetch/. Also, tags are

 not updated.

 This is done to avoid disrupting the remote-tracking branches. The end users expect

 these refs to stay unmoved unless they initiate a fetch. With prefetch task, however,

 the objects necessary to complete a later real fetch would already be obtained, so the

 real fetch would go faster. In the ideal case, it will just become an update to a

 bunch of remote-tracking branches without any object transfer.

 gc

 Clean up unnecessary files and optimize the local repository. "GC" stands for "garbage

 collection," but this task performs many smaller tasks. This task can be expensive for

 large repositories, as it repacks all Git objects into a single pack-file. It can also

 be disruptive in some situations, as it deletes stale data. See git-gc(1) for more

 details on garbage collection in Git.

 loose-objects

 The loose-objects job cleans up loose objects and places them into pack-files. In

 order to prevent race conditions with concurrent Git commands, it follows a two-step

 process. First, it deletes any loose objects that already exist in a pack-file;

 concurrent Git processes will examine the pack-file for the object data instead of the

 loose object. Second, it creates a new pack-file (starting with "loose-") containing a

 batch of loose objects. The batch size is limited to 50 thousand objects to prevent

 the job from taking too long on a repository with many loose objects. The gc task

 writes unreachable objects as loose objects to be cleaned up by a later step only if

 they are not re-added to a pack-file; for this reason it is not advisable to enable

 both the loose-objects and gc tasks at the same time.

 incremental-repack

 The incremental-repack job repacks the object directory using the multi-pack-index

 feature. In order to prevent race conditions with concurrent Git commands, it follows

 a two-step process. First, it calls git multi-pack-index expire to delete pack-files

 unreferenced by the multi-pack-index file. Second, it calls git multi-pack-index

 repack to select several small pack-files and repack them into a bigger one, and then

 update the multi-pack-index entries that refer to the small pack-files to refer to the Page 3/9

 new pack-file. This prepares those small pack-files for deletion upon the next run of

 git multi-pack-index expire. The selection of the small pack-files is such that the

 expected size of the big pack-file is at least the batch size; see the --batch-size

 option for the repack subcommand in git-multi-pack-index(1). The default batch-size is

 zero, which is a special case that attempts to repack all pack-files into a single

 pack-file.

 pack-refs

 The pack-refs task collects the loose reference files and collects them into a single

 file. This speeds up operations that need to iterate across many references. See git-

 pack-refs(1) for more information.

OPTIONS

 --auto

 When combined with the run subcommand, run maintenance tasks only if certain

 thresholds are met. For example, the gc task runs when the number of loose objects

 exceeds the number stored in the gc.auto config setting, or when the number of

 pack-files exceeds the gc.autoPackLimit config setting. Not compatible with the

 --schedule option.

 --schedule

 When combined with the run subcommand, run maintenance tasks only if certain time

 conditions are met, as specified by the maintenance.<task>.schedule config value for

 each <task>. This config value specifies a number of seconds since the last time that

 task ran, according to the maintenance.<task>.lastRun config value. The tasks that are

 tested are those provided by the --task=<task> option(s) or those with

 maintenance.<task>.enabled set to true.

 --quiet

 Do not report progress or other information over stderr.

 --task=<task>

 If this option is specified one or more times, then only run the specified tasks in

 the specified order. If no --task=<task> arguments are specified, then only the tasks

 with maintenance.<task>.enabled configured as true are considered. See the TASKS

 section for the list of accepted <task> values.

 --scheduler=auto|crontab|systemd-timer|launchctl|schtasks

 When combined with the start subcommand, specify the scheduler for running the hourly, Page 4/9

 daily and weekly executions of git maintenance run. Possible values for <scheduler>

 are auto, crontab (POSIX), systemd-timer (Linux), launchctl (macOS), and schtasks

 (Windows). When auto is specified, the appropriate platform-specific scheduler is

 used; on Linux, systemd-timer is used if available, otherwise crontab. Default is

 auto.

TROUBLESHOOTING

 The git maintenance command is designed to simplify the repository maintenance patterns

 while minimizing user wait time during Git commands. A variety of configuration options

 are available to allow customizing this process. The default maintenance options focus on

 operations that complete quickly, even on large repositories.

 Users may find some cases where scheduled maintenance tasks do not run as frequently as

 intended. Each git maintenance run command takes a lock on the repository?s object

 database, and this prevents other concurrent git maintenance run commands from running on

 the same repository. Without this safeguard, competing processes could leave the

 repository in an unpredictable state.

 The background maintenance schedule runs git maintenance run processes on an hourly basis.

 Each run executes the "hourly" tasks. At midnight, that process also executes the "daily"

 tasks. At midnight on the first day of the week, that process also executes the "weekly"

 tasks. A single process iterates over each registered repository, performing the scheduled

 tasks for that frequency. Depending on the number of registered repositories and their

 sizes, this process may take longer than an hour. In this case, multiple git maintenance

 run commands may run on the same repository at the same time, colliding on the object

 database lock. This results in one of the two tasks not running.

 If you find that some maintenance windows are taking longer than one hour to complete,

 then consider reducing the complexity of your maintenance tasks. For example, the gc task

 is much slower than the incremental-repack task. However, this comes at a cost of a

 slightly larger object database. Consider moving more expensive tasks to be run less

 frequently.

 Expert users may consider scheduling their own maintenance tasks using a different

 schedule than is available through git maintenance start and Git configuration options.

 These users should be aware of the object database lock and how concurrent git maintenance

 run commands behave. Further, the git gc command should not be combined with git

 maintenance run commands. git gc modifies the object database but does not take the lock Page 5/9

 in the same way as git maintenance run. If possible, use git maintenance run --task=gc

 instead of git gc.

 The following sections describe the mechanisms put in place to run background maintenance

 by git maintenance start and how to customize them.

BACKGROUND MAINTENANCE ON POSIX SYSTEMS

 The standard mechanism for scheduling background tasks on POSIX systems is cron(8). This

 tool executes commands based on a given schedule. The current list of user-scheduled tasks

 can be found by running crontab -l. The schedule written by git maintenance start is

 similar to this:

 # BEGIN GIT MAINTENANCE SCHEDULE

 # The following schedule was created by Git

 # Any edits made in this region might be

 # replaced in the future by a Git command.

 0 1-23 * * * "/<path>/git" --exec-path="/<path>" for-each-repo --config=maintenance.repo maintenance run

--schedule=hourly

 0 0 * * 1-6 "/<path>/git" --exec-path="/<path>" for-each-repo --config=maintenance.repo maintenance run

--schedule=daily

 0 0 * * 0 "/<path>/git" --exec-path="/<path>" for-each-repo --config=maintenance.repo maintenance run

--schedule=weekly

 # END GIT MAINTENANCE SCHEDULE

 The comments are used as a region to mark the schedule as written by Git. Any

 modifications within this region will be completely deleted by git maintenance stop or

 overwritten by git maintenance start.

 The crontab entry specifies the full path of the git executable to ensure that the

 executed git command is the same one with which git maintenance start was issued

 independent of PATH. If the same user runs git maintenance start with multiple Git

 executables, then only the latest executable is used.

 These commands use git for-each-repo --config=maintenance.repo to run git maintenance run

 --schedule=<frequency> on each repository listed in the multi-valued maintenance.repo

 config option. These are typically loaded from the user-specific global config. The git

 maintenance process then determines which maintenance tasks are configured to run on each

 repository with each <frequency> using the maintenance.<task>.schedule config options.

 These values are loaded from the global or repository config values. Page 6/9

 If the config values are insufficient to achieve your desired background maintenance

 schedule, then you can create your own schedule. If you run crontab -e, then an editor

 will load with your user-specific cron schedule. In that editor, you can add your own

 schedule lines. You could start by adapting the default schedule listed earlier, or you

 could read the crontab(5) documentation for advanced scheduling techniques. Please do use

 the full path and --exec-path techniques from the default schedule to ensure you are

 executing the correct binaries in your schedule.

BACKGROUND MAINTENANCE ON LINUX SYSTEMD SYSTEMS

 While Linux supports cron, depending on the distribution, cron may be an optional package

 not necessarily installed. On modern Linux distributions, systemd timers are superseding

 it.

 If user systemd timers are available, they will be used as a replacement of cron.

 In this case, git maintenance start will create user systemd timer units and start the

 timers. The current list of user-scheduled tasks can be found by running systemctl --user

 list-timers. The timers written by git maintenance start are similar to this:

 $ systemctl --user list-timers

 NEXT LEFT LAST PASSED UNIT ACTIVATES

 Thu 2021-04-29 19:00:00 CEST 42min left Thu 2021-04-29 18:00:11 CEST 17min ago

git-maintenance@hourly.timer git-maintenance@hourly.service

 Fri 2021-04-30 00:00:00 CEST 5h 42min left Thu 2021-04-29 00:00:11 CEST 18h ago git-maintenance@daily.timer

 git-maintenance@daily.service

 Mon 2021-05-03 00:00:00 CEST 3 days left Mon 2021-04-26 00:00:11 CEST 3 days ago

git-maintenance@weekly.timer git-maintenance@weekly.service

 One timer is registered for each --schedule=<frequency> option.

 The definition of the systemd units can be inspected in the following files:

 ~/.config/systemd/user/git-maintenance@.timer

 ~/.config/systemd/user/git-maintenance@.service

 ~/.config/systemd/user/timers.target.wants/git-maintenance@hourly.timer

 ~/.config/systemd/user/timers.target.wants/git-maintenance@daily.timer

 ~/.config/systemd/user/timers.target.wants/git-maintenance@weekly.timer

 git maintenance start will overwrite these files and start the timer again with systemctl

 --user, so any customization should be done by creating a drop-in file, i.e. a .conf

 suffixed file in the ~/.config/systemd/user/git-maintenance@.service.d directory. Page 7/9

 git maintenance stop will stop the user systemd timers and delete the above mentioned

 files.

 For more details, see systemd.timer(5).

BACKGROUND MAINTENANCE ON MACOS SYSTEMS

 While macOS technically supports cron, using crontab -e requires elevated privileges and

 the executed process does not have a full user context. Without a full user context, Git

 and its credential helpers cannot access stored credentials, so some maintenance tasks are

 not functional.

 Instead, git maintenance start interacts with the launchctl tool, which is the recommended

 way to schedule timed jobs in macOS. Scheduling maintenance through git maintenance

 (start|stop) requires some launchctl features available only in macOS 10.11 or later.

 Your user-specific scheduled tasks are stored as XML-formatted .plist files in

 ~/Library/LaunchAgents/. You can see the currently-registered tasks using the following

 command:

 $ ls ~/Library/LaunchAgents/org.git-scm.git*

 org.git-scm.git.daily.plist

 org.git-scm.git.hourly.plist

 org.git-scm.git.weekly.plist

 One task is registered for each --schedule=<frequency> option. To inspect how the XML

 format describes each schedule, open one of these .plist files in an editor and inspect

 the <array> element following the <key>StartCalendarInterval</key> element.

 git maintenance start will overwrite these files and register the tasks again with

 launchctl, so any customizations should be done by creating your own .plist files with

 distinct names. Similarly, the git maintenance stop command will unregister the tasks with

 launchctl and delete the .plist files.

 To create more advanced customizations to your background tasks, see launchctl.plist(5)

 for more information.

BACKGROUND MAINTENANCE ON WINDOWS SYSTEMS

 Windows does not support cron and instead has its own system for scheduling background

 tasks. The git maintenance start command uses the schtasks command to submit tasks to this

 system. You can inspect all background tasks using the Task Scheduler application. The

 tasks added by Git have names of the form Git Maintenance (<frequency>). The Task

 Scheduler GUI has ways to inspect these tasks, but you can also export the tasks to XML Page 8/9

 files and view the details there.

 Note that since Git is a console application, these background tasks create a console

 window visible to the current user. This can be changed manually by selecting the "Run

 whether user is logged in or not" option in Task Scheduler. This change requires a

 password input, which is why git maintenance start does not select it by default.

 If you want to customize the background tasks, please rename the tasks so future calls to

 git maintenance (start|stop) do not overwrite your custom tasks.

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-MAINTENANCE(1)

Page 9/9

