
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-merge.1'

$ man git-merge.1

GIT-MERGE(1) Git Manual GIT-MERGE(1)

NAME

 git-merge - Join two or more development histories together

SYNOPSIS

 git merge [-n] [--stat] [--no-commit] [--squash] [--[no-]edit]

 [--no-verify] [-s <strategy>] [-X <strategy-option>] [-S[<keyid>]]

 [--[no-]allow-unrelated-histories]

 [--[no-]rerere-autoupdate] [-m <msg>] [-F <file>] [<commit>...]

 git merge (--continue | --abort | --quit)

DESCRIPTION

 Incorporates changes from the named commits (since the time their histories diverged from

 the current branch) into the current branch. This command is used by git pull to

 incorporate changes from another repository and can be used by hand to merge changes from

 one branch into another.

 Assume the following history exists and the current branch is "master":

 A---B---C topic

 /

 D---E---F---G master

 Then "git merge topic" will replay the changes made on the topic branch since it diverged

 from master (i.e., E) until its current commit (C) on top of master, and record the result

 in a new commit along with the names of the two parent commits and a log message from the

 user describing the changes.

 A---B---C topic Page 1/18

 / \

 D---E---F---G---H master

 The second syntax ("git merge --abort") can only be run after the merge has resulted in

 conflicts. git merge --abort will abort the merge process and try to reconstruct the

 pre-merge state. However, if there were uncommitted changes when the merge started (and

 especially if those changes were further modified after the merge was started), git merge

 --abort will in some cases be unable to reconstruct the original (pre-merge) changes.

 Therefore:

 Warning: Running git merge with non-trivial uncommitted changes is discouraged: while

 possible, it may leave you in a state that is hard to back out of in the case of a

 conflict.

 The third syntax ("git merge --continue") can only be run after the merge has resulted in

 conflicts.

OPTIONS

 --commit, --no-commit

 Perform the merge and commit the result. This option can be used to override

 --no-commit.

 With --no-commit perform the merge and stop just before creating a merge commit, to

 give the user a chance to inspect and further tweak the merge result before

 committing.

 Note that fast-forward updates do not create a merge commit and therefore there is no

 way to stop those merges with --no-commit. Thus, if you want to ensure your branch is

 not changed or updated by the merge command, use --no-ff with --no-commit.

 --edit, -e, --no-edit

 Invoke an editor before committing successful mechanical merge to further edit the

 auto-generated merge message, so that the user can explain and justify the merge. The

 --no-edit option can be used to accept the auto-generated message (this is generally

 discouraged). The --edit (or -e) option is still useful if you are giving a draft

 message with the -m option from the command line and want to edit it in the editor.

 Older scripts may depend on the historical behaviour of not allowing the user to edit

 the merge log message. They will see an editor opened when they run git merge. To make

 it easier to adjust such scripts to the updated behaviour, the environment variable

 GIT_MERGE_AUTOEDIT can be set to no at the beginning of them. Page 2/18

 --cleanup=<mode>

 This option determines how the merge message will be cleaned up before committing. See

 git-commit(1) for more details. In addition, if the <mode> is given a value of

 scissors, scissors will be appended to MERGE_MSG before being passed on to the commit

 machinery in the case of a merge conflict.

 --ff, --no-ff, --ff-only

 Specifies how a merge is handled when the merged-in history is already a descendant of

 the current history. --ff is the default unless merging an annotated (and possibly

 signed) tag that is not stored in its natural place in the refs/tags/ hierarchy, in

 which case --no-ff is assumed.

 With --ff, when possible resolve the merge as a fast-forward (only update the branch

 pointer to match the merged branch; do not create a merge commit). When not possible

 (when the merged-in history is not a descendant of the current history), create a

 merge commit.

 With --no-ff, create a merge commit in all cases, even when the merge could instead be

 resolved as a fast-forward.

 With --ff-only, resolve the merge as a fast-forward when possible. When not possible,

 refuse to merge and exit with a non-zero status.

 -S[<keyid>], --gpg-sign[=<keyid>], --no-gpg-sign

 GPG-sign the resulting merge commit. The keyid argument is optional and defaults to

 the committer identity; if specified, it must be stuck to the option without a space.

 --no-gpg-sign is useful to countermand both commit.gpgSign configuration variable, and

 earlier --gpg-sign.

 --log[=<n>], --no-log

 In addition to branch names, populate the log message with one-line descriptions from

 at most <n> actual commits that are being merged. See also git-fmt-merge-msg(1).

 With --no-log do not list one-line descriptions from the actual commits being merged.

 --signoff, --no-signoff

 Add a Signed-off-by trailer by the committer at the end of the commit log message. The

 meaning of a signoff depends on the project to which you?re committing. For example,

 it may certify that the committer has the rights to submit the work under the

 project?s license or agrees to some contributor representation, such as a Developer

 Certificate of Origin. (See http://developercertificate.org for the one used by the Page 3/18

 Linux kernel and Git projects.) Consult the documentation or leadership of the project

 to which you?re contributing to understand how the signoffs are used in that project.

 The --no-signoff option can be used to countermand an earlier --signoff option on the

 command line.

 --stat, -n, --no-stat

 Show a diffstat at the end of the merge. The diffstat is also controlled by the

 configuration option merge.stat.

 With -n or --no-stat do not show a diffstat at the end of the merge.

 --squash, --no-squash

 Produce the working tree and index state as if a real merge happened (except for the

 merge information), but do not actually make a commit, move the HEAD, or record

 $GIT_DIR/MERGE_HEAD (to cause the next git commit command to create a merge commit).

 This allows you to create a single commit on top of the current branch whose effect is

 the same as merging another branch (or more in case of an octopus).

 With --no-squash perform the merge and commit the result. This option can be used to

 override --squash.

 With --squash, --commit is not allowed, and will fail.

 --[no-]verify

 By default, the pre-merge and commit-msg hooks are run. When --no-verify is given,

 these are bypassed. See also githooks(5).

 -s <strategy>, --strategy=<strategy>

 Use the given merge strategy; can be supplied more than once to specify them in the

 order they should be tried. If there is no -s option, a built-in list of strategies is

 used instead (ort when merging a single head, octopus otherwise).

 -X <option>, --strategy-option=<option>

 Pass merge strategy specific option through to the merge strategy.

 --verify-signatures, --no-verify-signatures

 Verify that the tip commit of the side branch being merged is signed with a valid key,

 i.e. a key that has a valid uid: in the default trust model, this means the signing

 key has been signed by a trusted key. If the tip commit of the side branch is not

 signed with a valid key, the merge is aborted.

 --summary, --no-summary

 Synonyms to --stat and --no-stat; these are deprecated and will be removed in the Page 4/18

 future.

 -q, --quiet

 Operate quietly. Implies --no-progress.

 -v, --verbose

 Be verbose.

 --progress, --no-progress

 Turn progress on/off explicitly. If neither is specified, progress is shown if

 standard error is connected to a terminal. Note that not all merge strategies may

 support progress reporting.

 --autostash, --no-autostash

 Automatically create a temporary stash entry before the operation begins, record it in

 the special ref MERGE_AUTOSTASH and apply it after the operation ends. This means that

 you can run the operation on a dirty worktree. However, use with care: the final stash

 application after a successful merge might result in non-trivial conflicts.

 --allow-unrelated-histories

 By default, git merge command refuses to merge histories that do not share a common

 ancestor. This option can be used to override this safety when merging histories of

 two projects that started their lives independently. As that is a very rare occasion,

 no configuration variable to enable this by default exists and will not be added.

 -m <msg>

 Set the commit message to be used for the merge commit (in case one is created).

 If --log is specified, a shortlog of the commits being merged will be appended to the

 specified message.

 The git fmt-merge-msg command can be used to give a good default for automated git

 merge invocations. The automated message can include the branch description.

 -F <file>, --file=<file>

 Read the commit message to be used for the merge commit (in case one is created).

 If --log is specified, a shortlog of the commits being merged will be appended to the

 specified message.

 --rerere-autoupdate, --no-rerere-autoupdate

 Allow the rerere mechanism to update the index with the result of auto-conflict

 resolution if possible.

 --overwrite-ignore, --no-overwrite-ignore Page 5/18

 Silently overwrite ignored files from the merge result. This is the default behavior.

 Use --no-overwrite-ignore to abort.

 --abort

 Abort the current conflict resolution process, and try to reconstruct the pre-merge

 state. If an autostash entry is present, apply it to the worktree.

 If there were uncommitted worktree changes present when the merge started, git merge

 --abort will in some cases be unable to reconstruct these changes. It is therefore

 recommended to always commit or stash your changes before running git merge.

 git merge --abort is equivalent to git reset --merge when MERGE_HEAD is present unless

 MERGE_AUTOSTASH is also present in which case git merge --abort applies the stash

 entry to the worktree whereas git reset --merge will save the stashed changes in the

 stash list.

 --quit

 Forget about the current merge in progress. Leave the index and the working tree

 as-is. If MERGE_AUTOSTASH is present, the stash entry will be saved to the stash list.

 --continue

 After a git merge stops due to conflicts you can conclude the merge by running git

 merge --continue (see "HOW TO RESOLVE CONFLICTS" section below).

 <commit>...

 Commits, usually other branch heads, to merge into our branch. Specifying more than

 one commit will create a merge with more than two parents (affectionately called an

 Octopus merge).

 If no commit is given from the command line, merge the remote-tracking branches that

 the current branch is configured to use as its upstream. See also the configuration

 section of this manual page.

 When FETCH_HEAD (and no other commit) is specified, the branches recorded in the

 .git/FETCH_HEAD file by the previous invocation of git fetch for merging are merged to

 the current branch.

PRE-MERGE CHECKS

 Before applying outside changes, you should get your own work in good shape and committed

 locally, so it will not be clobbered if there are conflicts. See also git-stash(1). git

 pull and git merge will stop without doing anything when local uncommitted changes overlap

 with files that git pull/git merge may need to update. Page 6/18

 To avoid recording unrelated changes in the merge commit, git pull and git merge will also

 abort if there are any changes registered in the index relative to the HEAD commit.

 (Special narrow exceptions to this rule may exist depending on which merge strategy is in

 use, but generally, the index must match HEAD.)

 If all named commits are already ancestors of HEAD, git merge will exit early with the

 message "Already up to date."

FAST-FORWARD MERGE

 Often the current branch head is an ancestor of the named commit. This is the most common

 case especially when invoked from git pull: you are tracking an upstream repository, you

 have committed no local changes, and now you want to update to a newer upstream revision.

 In this case, a new commit is not needed to store the combined history; instead, the HEAD

 (along with the index) is updated to point at the named commit, without creating an extra

 merge commit.

 This behavior can be suppressed with the --no-ff option.

TRUE MERGE

 Except in a fast-forward merge (see above), the branches to be merged must be tied

 together by a merge commit that has both of them as its parents.

 A merged version reconciling the changes from all branches to be merged is committed, and

 your HEAD, index, and working tree are updated to it. It is possible to have modifications

 in the working tree as long as they do not overlap; the update will preserve them.

 When it is not obvious how to reconcile the changes, the following happens:

 1. The HEAD pointer stays the same.

 2. The MERGE_HEAD ref is set to point to the other branch head.

 3. Paths that merged cleanly are updated both in the index file and in your working tree.

 4. For conflicting paths, the index file records up to three versions: stage 1 stores the

 version from the common ancestor, stage 2 from HEAD, and stage 3 from MERGE_HEAD (you

 can inspect the stages with git ls-files -u). The working tree files contain the

 result of the "merge" program; i.e. 3-way merge results with familiar conflict markers

 <<< === >>>.

 5. No other changes are made. In particular, the local modifications you had before you

 started merge will stay the same and the index entries for them stay as they were,

 i.e. matching HEAD.

 If you tried a merge which resulted in complex conflicts and want to start over, you can Page 7/18

 recover with git merge --abort.

MERGING TAG

 When merging an annotated (and possibly signed) tag, Git always creates a merge commit

 even if a fast-forward merge is possible, and the commit message template is prepared with

 the tag message. Additionally, if the tag is signed, the signature check is reported as a

 comment in the message template. See also git-tag(1).

 When you want to just integrate with the work leading to the commit that happens to be

 tagged, e.g. synchronizing with an upstream release point, you may not want to make an

 unnecessary merge commit.

 In such a case, you can "unwrap" the tag yourself before feeding it to git merge, or pass

 --ff-only when you do not have any work on your own. e.g.

 git fetch origin

 git merge v1.2.3^0

 git merge --ff-only v1.2.3

HOW CONFLICTS ARE PRESENTED

 During a merge, the working tree files are updated to reflect the result of the merge.

 Among the changes made to the common ancestor?s version, non-overlapping ones (that is,

 you changed an area of the file while the other side left that area intact, or vice versa)

 are incorporated in the final result verbatim. When both sides made changes to the same

 area, however, Git cannot randomly pick one side over the other, and asks you to resolve

 it by leaving what both sides did to that area.

 By default, Git uses the same style as the one used by the "merge" program from the RCS

 suite to present such a conflicted hunk, like this:

 Here are lines that are either unchanged from the common

 ancestor, or cleanly resolved because only one side changed.

 <<<<<<< yours:sample.txt

 Conflict resolution is hard;

 let's go shopping.

 =======

 Git makes conflict resolution easy.

 >>>>>>> theirs:sample.txt

 And here is another line that is cleanly resolved or unmodified.

 The area where a pair of conflicting changes happened is marked with markers <<<<<<<, Page 8/18

 =======, and >>>>>>>. The part before the ======= is typically your side, and the part

 afterwards is typically their side.

 The default format does not show what the original said in the conflicting area. You

 cannot tell how many lines are deleted and replaced with Barbie?s remark on your side. The

 only thing you can tell is that your side wants to say it is hard and you?d prefer to go

 shopping, while the other side wants to claim it is easy.

 An alternative style can be used by setting the "merge.conflictStyle" configuration

 variable to "diff3". In "diff3" style, the above conflict may look like this:

 Here are lines that are either unchanged from the common

 ancestor, or cleanly resolved because only one side changed.

 <<<<<<< yours:sample.txt

 Conflict resolution is hard;

 let's go shopping.

 |||||||

 Conflict resolution is hard.

 =======

 Git makes conflict resolution easy.

 >>>>>>> theirs:sample.txt

 And here is another line that is cleanly resolved or unmodified.

 In addition to the <<<<<<<, =======, and >>>>>>> markers, it uses another ||||||| marker

 that is followed by the original text. You can tell that the original just stated a fact,

 and your side simply gave in to that statement and gave up, while the other side tried to

 have a more positive attitude. You can sometimes come up with a better resolution by

 viewing the original.

HOW TO RESOLVE CONFLICTS

 After seeing a conflict, you can do two things:

 ? Decide not to merge. The only clean-ups you need are to reset the index file to the

 HEAD commit to reverse 2. and to clean up working tree changes made by 2. and 3.; git

 merge --abort can be used for this.

 ? Resolve the conflicts. Git will mark the conflicts in the working tree. Edit the files

 into shape and git add them to the index. Use git commit or git merge --continue to

 seal the deal. The latter command checks whether there is a (interrupted) merge in

 progress before calling git commit. Page 9/18

 You can work through the conflict with a number of tools:

 ? Use a mergetool. git mergetool to launch a graphical mergetool which will work you

 through the merge.

 ? Look at the diffs. git diff will show a three-way diff, highlighting changes from

 both the HEAD and MERGE_HEAD versions.

 ? Look at the diffs from each branch. git log --merge -p <path> will show diffs first

 for the HEAD version and then the MERGE_HEAD version.

 ? Look at the originals. git show :1:filename shows the common ancestor, git show

 :2:filename shows the HEAD version, and git show :3:filename shows the MERGE_HEAD

 version.

EXAMPLES

 ? Merge branches fixes and enhancements on top of the current branch, making an octopus

 merge:

 $ git merge fixes enhancements

 ? Merge branch obsolete into the current branch, using ours merge strategy:

 $ git merge -s ours obsolete

 ? Merge branch maint into the current branch, but do not make a new commit

 automatically:

 $ git merge --no-commit maint

 This can be used when you want to include further changes to the merge, or want to

 write your own merge commit message.

 You should refrain from abusing this option to sneak substantial changes into a merge

 commit. Small fixups like bumping release/version name would be acceptable.

MERGE STRATEGIES

 The merge mechanism (git merge and git pull commands) allows the backend merge strategies

 to be chosen with -s option. Some strategies can also take their own options, which can be

 passed by giving -X<option> arguments to git merge and/or git pull.

 ort

 This is the default merge strategy when pulling or merging one branch. This strategy

 can only resolve two heads using a 3-way merge algorithm. When there is more than one

 common ancestor that can be used for 3-way merge, it creates a merged tree of the

 common ancestors and uses that as the reference tree for the 3-way merge. This has

 been reported to result in fewer merge conflicts without causing mismerges by tests Page 10/18

 done on actual merge commits taken from Linux 2.6 kernel development history.

 Additionally this strategy can detect and handle merges involving renames. It does not

 make use of detected copies. The name for this algorithm is an acronym ("Ostensibly

 Recursive?s Twin") and came from the fact that it was written as a replacement for the

 previous default algorithm, recursive.

 The ort strategy can take the following options:

 ours

 This option forces conflicting hunks to be auto-resolved cleanly by favoring our

 version. Changes from the other tree that do not conflict with our side are

 reflected in the merge result. For a binary file, the entire contents are taken

 from our side.

 This should not be confused with the ours merge strategy, which does not even look

 at what the other tree contains at all. It discards everything the other tree did,

 declaring our history contains all that happened in it.

 theirs

 This is the opposite of ours; note that, unlike ours, there is no theirs merge

 strategy to confuse this merge option with.

 ignore-space-change, ignore-all-space, ignore-space-at-eol, ignore-cr-at-eol

 Treats lines with the indicated type of whitespace change as unchanged for the

 sake of a three-way merge. Whitespace changes mixed with other changes to a line

 are not ignored. See also git-diff(1) -b, -w, --ignore-space-at-eol, and

 --ignore-cr-at-eol.

 ? If their version only introduces whitespace changes to a line, our version is

 used;

 ? If our version introduces whitespace changes but their version includes a

 substantial change, their version is used;

 ? Otherwise, the merge proceeds in the usual way.

 renormalize

 This runs a virtual check-out and check-in of all three stages of a file when

 resolving a three-way merge. This option is meant to be used when merging branches

 with different clean filters or end-of-line normalization rules. See "Merging

 branches with differing checkin/checkout attributes" in gitattributes(5) for

 details. Page 11/18

 no-renormalize

 Disables the renormalize option. This overrides the merge.renormalize

 configuration variable.

 find-renames[=<n>]

 Turn on rename detection, optionally setting the similarity threshold. This is the

 default. This overrides the merge.renames configuration variable. See also git-

 diff(1) --find-renames.

 rename-threshold=<n>

 Deprecated synonym for find-renames=<n>.

 subtree[=<path>]

 This option is a more advanced form of subtree strategy, where the strategy makes

 a guess on how two trees must be shifted to match with each other when merging.

 Instead, the specified path is prefixed (or stripped from the beginning) to make

 the shape of two trees to match.

 recursive

 This can only resolve two heads using a 3-way merge algorithm. When there is more than

 one common ancestor that can be used for 3-way merge, it creates a merged tree of the

 common ancestors and uses that as the reference tree for the 3-way merge. This has

 been reported to result in fewer merge conflicts without causing mismerges by tests

 done on actual merge commits taken from Linux 2.6 kernel development history.

 Additionally this can detect and handle merges involving renames. It does not make use

 of detected copies. This was the default strategy for resolving two heads from Git

 v0.99.9k until v2.33.0.

 The recursive strategy takes the same options as ort. However, there are three

 additional options that ort ignores (not documented above) that are potentially useful

 with the recursive strategy:

 patience

 Deprecated synonym for diff-algorithm=patience.

 diff-algorithm=[patience|minimal|histogram|myers]

 Use a different diff algorithm while merging, which can help avoid mismerges that

 occur due to unimportant matching lines (such as braces from distinct functions).

 See also git-diff(1) --diff-algorithm. Note that ort specifically uses

 diff-algorithm=histogram, while recursive defaults to the diff.algorithm config Page 12/18

 setting.

 no-renames

 Turn off rename detection. This overrides the merge.renames configuration

 variable. See also git-diff(1) --no-renames.

 resolve

 This can only resolve two heads (i.e. the current branch and another branch you pulled

 from) using a 3-way merge algorithm. It tries to carefully detect criss-cross merge

 ambiguities. It does not handle renames.

 octopus

 This resolves cases with more than two heads, but refuses to do a complex merge that

 needs manual resolution. It is primarily meant to be used for bundling topic branch

 heads together. This is the default merge strategy when pulling or merging more than

 one branch.

 ours

 This resolves any number of heads, but the resulting tree of the merge is always that

 of the current branch head, effectively ignoring all changes from all other branches.

 It is meant to be used to supersede old development history of side branches. Note

 that this is different from the -Xours option to the recursive merge strategy.

 subtree

 This is a modified ort strategy. When merging trees A and B, if B corresponds to a

 subtree of A, B is first adjusted to match the tree structure of A, instead of reading

 the trees at the same level. This adjustment is also done to the common ancestor tree.

 With the strategies that use 3-way merge (including the default, ort), if a change is made

 on both branches, but later reverted on one of the branches, that change will be present

 in the merged result; some people find this behavior confusing. It occurs because only the

 heads and the merge base are considered when performing a merge, not the individual

 commits. The merge algorithm therefore considers the reverted change as no change at all,

 and substitutes the changed version instead.

CONFIGURATION

 merge.conflictStyle

 Specify the style in which conflicted hunks are written out to working tree files upon

 merge. The default is "merge", which shows a <<<<<<< conflict marker, changes made by

 one side, a ======= marker, changes made by the other side, and then a >>>>>>> marker. Page 13/18

 An alternate style, "diff3", adds a ||||||| marker and the original text before the

 ======= marker.

 merge.defaultToUpstream

 If merge is called without any commit argument, merge the upstream branches configured

 for the current branch by using their last observed values stored in their

 remote-tracking branches. The values of the branch.<current branch>.merge that name

 the branches at the remote named by branch.<current branch>.remote are consulted, and

 then they are mapped via remote.<remote>.fetch to their corresponding remote-tracking

 branches, and the tips of these tracking branches are merged. Defaults to true.

 merge.ff

 By default, Git does not create an extra merge commit when merging a commit that is a

 descendant of the current commit. Instead, the tip of the current branch is

 fast-forwarded. When set to false, this variable tells Git to create an extra merge

 commit in such a case (equivalent to giving the --no-ff option from the command line).

 When set to only, only such fast-forward merges are allowed (equivalent to giving the

 --ff-only option from the command line).

 merge.verifySignatures

 If true, this is equivalent to the --verify-signatures command line option. See git-

 merge(1) for details.

 merge.branchdesc

 In addition to branch names, populate the log message with the branch description text

 associated with them. Defaults to false.

 merge.log

 In addition to branch names, populate the log message with at most the specified

 number of one-line descriptions from the actual commits that are being merged.

 Defaults to false, and true is a synonym for 20.

 merge.suppressDest

 By adding a glob that matches the names of integration branches to this multi-valued

 configuration variable, the default merge message computed for merges into these

 integration branches will omit "into <branch name>" from its title.

 An element with an empty value can be used to clear the list of globs accumulated from

 previous configuration entries. When there is no merge.suppressDest variable defined,

 the default value of master is used for backward compatibility. Page 14/18

 merge.renameLimit

 The number of files to consider in the exhaustive portion of rename detection during a

 merge. If not specified, defaults to the value of diff.renameLimit. If neither

 merge.renameLimit nor diff.renameLimit are specified, currently defaults to 7000. This

 setting has no effect if rename detection is turned off.

 merge.renames

 Whether Git detects renames. If set to "false", rename detection is disabled. If set

 to "true", basic rename detection is enabled. Defaults to the value of diff.renames.

 merge.directoryRenames

 Whether Git detects directory renames, affecting what happens at merge time to new

 files added to a directory on one side of history when that directory was renamed on

 the other side of history. If merge.directoryRenames is set to "false", directory

 rename detection is disabled, meaning that such new files will be left behind in the

 old directory. If set to "true", directory rename detection is enabled, meaning that

 such new files will be moved into the new directory. If set to "conflict", a conflict

 will be reported for such paths. If merge.renames is false, merge.directoryRenames is

 ignored and treated as false. Defaults to "conflict".

 merge.renormalize

 Tell Git that canonical representation of files in the repository has changed over

 time (e.g. earlier commits record text files with CRLF line endings, but recent ones

 use LF line endings). In such a repository, Git can convert the data recorded in

 commits to a canonical form before performing a merge to reduce unnecessary conflicts.

 For more information, see section "Merging branches with differing checkin/checkout

 attributes" in gitattributes(5).

 merge.stat

 Whether to print the diffstat between ORIG_HEAD and the merge result at the end of the

 merge. True by default.

 merge.autoStash

 When set to true, automatically create a temporary stash entry before the operation

 begins, and apply it after the operation ends. This means that you can run merge on a

 dirty worktree. However, use with care: the final stash application after a successful

 merge might result in non-trivial conflicts. This option can be overridden by the

 --no-autostash and --autostash options of git-merge(1). Defaults to false. Page 15/18

 merge.tool

 Controls which merge tool is used by git-mergetool(1). The list below shows the valid

 built-in values. Any other value is treated as a custom merge tool and requires that a

 corresponding mergetool.<tool>.cmd variable is defined.

 merge.guitool

 Controls which merge tool is used by git-mergetool(1) when the -g/--gui flag is

 specified. The list below shows the valid built-in values. Any other value is treated

 as a custom merge tool and requires that a corresponding mergetool.<guitool>.cmd

 variable is defined.

 ? araxis

 ? bc

 ? bc3

 ? bc4

 ? codecompare

 ? deltawalker

 ? diffmerge

 ? diffuse

 ? ecmerge

 ? emerge

 ? examdiff

 ? guiffy

 ? gvimdiff

 ? gvimdiff1

 ? gvimdiff2

 ? gvimdiff3

 ? kdiff3

 ? meld

 ? nvimdiff

 ? nvimdiff1

 ? nvimdiff2

 ? nvimdiff3

 ? opendiff

 ? p4merge Page 16/18

 ? smerge

 ? tkdiff

 ? tortoisemerge

 ? vimdiff

 ? vimdiff1

 ? vimdiff2

 ? vimdiff3

 ? winmerge

 ? xxdiff

 merge.verbosity

 Controls the amount of output shown by the recursive merge strategy. Level 0 outputs

 nothing except a final error message if conflicts were detected. Level 1 outputs only

 conflicts, 2 outputs conflicts and file changes. Level 5 and above outputs debugging

 information. The default is level 2. Can be overridden by the GIT_MERGE_VERBOSITY

 environment variable.

 merge.<driver>.name

 Defines a human-readable name for a custom low-level merge driver. See

 gitattributes(5) for details.

 merge.<driver>.driver

 Defines the command that implements a custom low-level merge driver. See

 gitattributes(5) for details.

 merge.<driver>.recursive

 Names a low-level merge driver to be used when performing an internal merge between

 common ancestors. See gitattributes(5) for details.

 branch.<name>.mergeOptions

 Sets default options for merging into branch <name>. The syntax and supported options

 are the same as those of git merge, but option values containing whitespace characters

 are currently not supported.

SEE ALSO

 git-fmt-merge-msg(1), git-pull(1), gitattributes(5), git-reset(1), git-diff(1), git-ls-

 files(1), git-add(1), git-rm(1), git-mergetool(1)

GIT

 Part of the git(1) suite Page 17/18

Git 2.34.1 07/07/2023 GIT-MERGE(1)

Page 18/18

